Your browser doesn't support javascript.
loading
Impact of Nanoparticle Uptake on the Biophysical Properties of Cell for Biomedical Engineering Applications.
Rasel, Md Alim Iftekhar; Singh, Sanjleena; Nguyen, Trung Dung; Afara, Isaac O; Gu, Yuantong.
Affiliation
  • Rasel MAI; School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Australia.
  • Nguyen TD; Department of Aerospace and Mechanical Engineering, College of Engineering, University of Notre Dame, Notre Dame, Indiana, 46556, USA.
  • Afara IO; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
  • Gu Y; School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology (QUT), Brisbane, Australia. yuantong.gu@qut.edu.au.
Sci Rep ; 9(1): 5859, 2019 04 10.
Article in En | MEDLINE | ID: mdl-30971727
ABSTRACT
Nanomaterials are currently the state-of-the-art in the development of advanced biomedical devices and applications where classical approaches have failed. To date, majority of the literature on nanomaterial interaction with cells have largely focused on the biological responses of cells obtained via assays, with little interest on their biophysical responses. However, recent studies have shown that the biophysical responses of cells, such as stiffness and adhesive properties, play a significant role in their physiological function. In this paper, we investigate cell biophysical responses after uptake of nanoparticles. Atomic force microscopy was used to study changes in cell stiffness and adhesion upon boron nitride (BN) and hydroxyapatite (HAP) nanoparticle uptake. Results show increase in cell stiffness with varying nanoparticle (BN and HAP) concentration, while a decrease in cell adhesion trigger by uptake of HAP. In addition, changes in the biochemical response of the cell membrane were observed via Raman spectroscopy of nanoparticle treated cells. These findings have significant implications in biomedical applications of nanoparticles, e.g. in drug delivery, advanced prosthesis and surgical implants.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Biomedical Engineering / Nanoparticles Limits: Humans Language: En Journal: Sci Rep Year: 2019 Document type: Article Affiliation country: Australia

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Biomedical Engineering / Nanoparticles Limits: Humans Language: En Journal: Sci Rep Year: 2019 Document type: Article Affiliation country: Australia