Your browser doesn't support javascript.
loading
Regulation of cyclic oligoadenylate synthesis by the Staphylococcus epidermidis Cas10-Csm complex.
Nasef, Mohamed; Muffly, Mary C; Beckman, Andrew B; Rowe, Sebastian J; Walker, Forrest C; Hatoum-Aslan, Asma; Dunkle, Jack A.
Affiliation
  • Nasef M; Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA.
  • Muffly MC; Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA.
  • Beckman AB; Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA.
  • Rowe SJ; Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA.
  • Walker FC; Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487, USA.
  • Hatoum-Aslan A; Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487, USA.
  • Dunkle JA; Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35487, USA.
RNA ; 25(8): 948-962, 2019 08.
Article in En | MEDLINE | ID: mdl-31076459
CRISPR-Cas systems are a class of adaptive immune systems in prokaryotes that use small CRISPR RNAs (crRNAs) in conjunction with CRISPR-associated (Cas) nucleases to recognize and degrade foreign nucleic acids. Recent studies have revealed that Type III CRISPR-Cas systems synthesize second messenger molecules previously unknown to exist in prokaryotes, cyclic oligoadenylates (cOA). These molecules activate the Csm6 nuclease to promote RNA degradation and may also coordinate additional cellular responses to foreign nucleic acids. Although cOA production has been reconstituted and characterized for a few bacterial and archaeal Type III systems, cOA generation and its regulation have not been explored for the Staphylococcus epidermidis Type III-A CRISPR-Cas system, a longstanding model for CRISPR-Cas function. Here, we demonstrate that this system performs Mg2+-dependent synthesis of 3-6 nt cOA. We show that activation of cOA synthesis is perturbed by single nucleotide mismatches between the crRNA and target RNA at discrete positions, and that synthesis is antagonized by Csm3-mediated target RNA cleavage. Altogether, our results establish the requirements for cOA production in a model Type III CRISPR-Cas system and suggest a natural mechanism to dampen immunity once the foreign RNA is destroyed.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Oligoribonucleotides / Staphylococcus epidermidis / RNA, Bacterial / Adenine Nucleotides / CRISPR-Associated Proteins Language: En Journal: RNA Journal subject: BIOLOGIA MOLECULAR Year: 2019 Document type: Article Affiliation country: Estados Unidos Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Oligoribonucleotides / Staphylococcus epidermidis / RNA, Bacterial / Adenine Nucleotides / CRISPR-Associated Proteins Language: En Journal: RNA Journal subject: BIOLOGIA MOLECULAR Year: 2019 Document type: Article Affiliation country: Estados Unidos Country of publication: Estados Unidos