Regulation of cyclic oligoadenylate synthesis by the Staphylococcus epidermidis Cas10-Csm complex.
RNA
; 25(8): 948-962, 2019 08.
Article
in En
| MEDLINE
| ID: mdl-31076459
CRISPR-Cas systems are a class of adaptive immune systems in prokaryotes that use small CRISPR RNAs (crRNAs) in conjunction with CRISPR-associated (Cas) nucleases to recognize and degrade foreign nucleic acids. Recent studies have revealed that Type III CRISPR-Cas systems synthesize second messenger molecules previously unknown to exist in prokaryotes, cyclic oligoadenylates (cOA). These molecules activate the Csm6 nuclease to promote RNA degradation and may also coordinate additional cellular responses to foreign nucleic acids. Although cOA production has been reconstituted and characterized for a few bacterial and archaeal Type III systems, cOA generation and its regulation have not been explored for the Staphylococcus epidermidis Type III-A CRISPR-Cas system, a longstanding model for CRISPR-Cas function. Here, we demonstrate that this system performs Mg2+-dependent synthesis of 3-6 nt cOA. We show that activation of cOA synthesis is perturbed by single nucleotide mismatches between the crRNA and target RNA at discrete positions, and that synthesis is antagonized by Csm3-mediated target RNA cleavage. Altogether, our results establish the requirements for cOA production in a model Type III CRISPR-Cas system and suggest a natural mechanism to dampen immunity once the foreign RNA is destroyed.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Oligoribonucleotides
/
Staphylococcus epidermidis
/
RNA, Bacterial
/
Adenine Nucleotides
/
CRISPR-Associated Proteins
Language:
En
Journal:
RNA
Journal subject:
BIOLOGIA MOLECULAR
Year:
2019
Document type:
Article
Affiliation country:
Estados Unidos
Country of publication:
Estados Unidos