Your browser doesn't support javascript.
loading
Identification of new hypoxia-regulated epithelial-mesenchymal transition marker genes labeled by H3K4 acetylation.
Wang, Jian-Qiu; Yan, Feng-Qin; Wang, Li-Hui; Yin, Wen-Juan; Chang, Ting-Yu; Liu, Jun-Ping; Wu, Kou-Juey.
Affiliation
  • Wang JQ; Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China.
  • Yan FQ; Department of Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China.
  • Wang LH; Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China.
  • Yin WJ; Department of Radiotherapy, Zhejiang Cancer Hospital, Hangzhou, China.
  • Chang TY; Institute of Microbiology & Immunology, National Yang-Ming University, Taipei, Taiwan.
  • Liu JP; Institute of Ageing Research, School of Medicine, Hangzhou Normal University, Hangzhou, China.
  • Wu KJ; Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
Genes Chromosomes Cancer ; 59(2): 73-83, 2020 02.
Article in En | MEDLINE | ID: mdl-31408253
ABSTRACT
Hypoxia-induced epithelial-mesenchymal transition (EMT) involves the interplay between chromatin modifiers histone deacetylase 3 (HDAC3) and WDR5. The histone mark histone 3 lysine 4 acetylation (H3K4Ac) is observed in the promoter regions of various EMT marker genes (eg, CDH1 and VIM). To further define the genome-wide location of H3K4Ac, a chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) analysis was performed using a head and neck squamous cell carcinoma (HNSCC) FaDu cell line under normoxia and hypoxia. H3K4Ac was found to be located mainly around the transcription start site. Coupled with analysis of gene expression by RNA sequencing and using a HDAC3 knockdown cell line, 10 new genes (BMI1, GLI1, SMO, FOXF1, SIRT2, etc) that were labeled by H3K4Ac and regulated by HDAC3 were identified. Overexpression or knockdown of GLI1/SMO increased or repressed the in vitro migration and invasion activity in OECM-1/FaDu cells, respectively. In HNSCC patients, coexpression of GLI1 and SMO in primary tumors correlated with metastasis. Our results identify new EMT marker genes that may play a significant role in hypoxia-induced EMT and metastasis and further provide diagnostic and prognostic implications.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Histones / Epithelial-Mesenchymal Transition / Histone Deacetylases Type of study: Diagnostic_studies / Prognostic_studies Limits: Humans Language: En Journal: Genes Chromosomes Cancer Journal subject: BIOLOGIA MOLECULAR / NEOPLASIAS Year: 2020 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Histones / Epithelial-Mesenchymal Transition / Histone Deacetylases Type of study: Diagnostic_studies / Prognostic_studies Limits: Humans Language: En Journal: Genes Chromosomes Cancer Journal subject: BIOLOGIA MOLECULAR / NEOPLASIAS Year: 2020 Document type: Article Affiliation country: China