Your browser doesn't support javascript.
loading
Nanoscale coupling of junctophilin-2 and ryanodine receptors regulates vascular smooth muscle cell contractility.
Pritchard, Harry A T; Griffin, Caoimhin S; Yamasaki, Evan; Thakore, Pratish; Lane, Conor; Greenstein, Adam S; Earley, Scott.
Affiliation
  • Pritchard HAT; Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557.
  • Griffin CS; Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom.
  • Yamasaki E; Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557.
  • Thakore P; Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557.
  • Lane C; Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557.
  • Greenstein AS; Department of Pharmacology, Center for Molecular and Cellular Signaling in the Cardiovascular System, University of Nevada, Reno School of Medicine, Reno, NV 89557.
  • Earley S; Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, United Kingdom.
Proc Natl Acad Sci U S A ; 116(43): 21874-21881, 2019 10 22.
Article in En | MEDLINE | ID: mdl-31591206
ABSTRACT
Junctophilin proteins maintain close contacts between the endoplasmic/sarcoplasmic reticulum (ER/SR) and the plasma membrane in many types of cells, as typified by junctophilin-2 (JPH2), which is necessary for the formation of the cardiac dyad. Here, we report that JPH2 is the most abundant junctophilin isotype in native smooth muscle cells (SMCs) isolated from cerebral arteries and that acute knockdown diminishes the area of sites of interaction between the SR and plasma membrane. Superresolution microscopy revealed nanometer-scale colocalization of JPH2 clusters with type 2 ryanodine receptor (RyR2) clusters near the cell surface. Knockdown of JPH2 had no effect on the frequency, amplitude, or kinetics of spontaneous Ca2+ sparks generated by transient release of Ca2+ from the SR through RyR2s, but it did nearly abolish Ca2+ spark-activated, large-conductance, Ca2+-activated K+ (BK) channel currents. We also found that JPH2 knockdown was associated with hypercontractility of intact cerebral arteries. We conclude that JPH2 maintains functional coupling between RyR2s and BK channels and is critically important for cerebral arterial function.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cerebral Arteries / Ryanodine Receptor Calcium Release Channel / Membrane Proteins / Muscle Contraction / Muscle, Smooth, Vascular Limits: Animals Language: En Journal: Proc Natl Acad Sci U S A Year: 2019 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cerebral Arteries / Ryanodine Receptor Calcium Release Channel / Membrane Proteins / Muscle Contraction / Muscle, Smooth, Vascular Limits: Animals Language: En Journal: Proc Natl Acad Sci U S A Year: 2019 Document type: Article