Your browser doesn't support javascript.
loading
Engineering Chirally Blind Protein Pseudocapsids into Antibacterial Persisters.
Kepiro, Ibolya E; Marzuoli, Irene; Hammond, Katharine; Ba, Xiaoliang; Lewis, Helen; Shaw, Michael; Gunnoo, Smita B; De Santis, Emiliana; Lapinska, Urszula; Pagliara, Stefano; Holmes, Mark A; Lorenz, Christian D; Hoogenboom, Bart W; Fraternali, Franca; Ryadnov, Maxim G.
Affiliation
  • Kepiro IE; National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K.
  • Marzuoli I; National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K.
  • Hammond K; Randall Centre for Cell and Molecular Biophysics , King's College London , London , SE1 1UL , U.K.
  • Ba X; National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K.
  • Lewis H; Department of Physics and Astronomy , University College London , London , WC1E 6BT , U.K.
  • Shaw M; London Centre for Nanotechnology , University College London , London , WC1H 0AH , U.K.
  • Gunnoo SB; Department of Veterinary Medicine , University of Cambridge , Cambridge , CB3 0ES , U.K.
  • De Santis E; National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K.
  • Lapinska U; National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K.
  • Pagliara S; Department of Computer Science , University College London , London , WC1 6BT , U.K.
  • Holmes MA; National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K.
  • Lorenz CD; National Physical Laboratory , Hampton Road , Teddington , TW11 0LW , U.K.
  • Hoogenboom BW; Living Systems Institute , University of Exeter , Exeter , EX4 4QD , U.K.
  • Fraternali F; Living Systems Institute , University of Exeter , Exeter , EX4 4QD , U.K.
  • Ryadnov MG; Department of Veterinary Medicine , University of Cambridge , Cambridge , CB3 0ES , U.K.
ACS Nano ; 14(2): 1609-1622, 2020 02 25.
Article in En | MEDLINE | ID: mdl-31794180
Antimicrobial resistance stimulates the search for antimicrobial forms that may be less subject to acquired resistance. Here we report a conceptual design of protein pseudocapsids exhibiting a broad spectrum of antimicrobial activities. Unlike conventional antibiotics, these agents are effective against phenotypic bacterial variants, while clearing "superbugs" in vivo without toxicity. The design adopts an icosahedral architecture that is polymorphic in size, but not in shape, and that is available in both l and d epimeric forms. Using a combination of nanoscale and single-cell imaging we demonstrate that such pseudocapsids inflict rapid and irreparable damage to bacterial cells. In phospholipid membranes they rapidly convert into nanopores, which remain confined to the binding positions of individual pseudocapsids. This mechanism ensures precisely delivered influxes of high antimicrobial doses, rendering the design a versatile platform for engineering structurally diverse and functionally persistent antimicrobial agents.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Protein Engineering / Escherichia coli / Anti-Bacterial Agents Type of study: Clinical_trials Language: En Journal: ACS Nano Year: 2020 Document type: Article Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Protein Engineering / Escherichia coli / Anti-Bacterial Agents Type of study: Clinical_trials Language: En Journal: ACS Nano Year: 2020 Document type: Article Country of publication: Estados Unidos