Your browser doesn't support javascript.
loading
Metal-Free H2 Activation for Highly Selective Hydrogenation of Nitroaromatics Using Phosphorus-Doped Carbon Nanotubes.
Chen, Xuehua; Shen, Qiujuan; Li, Zhijing; Wan, Weihao; Chen, Jinzhu; Zhang, Jiayan.
Affiliation
  • Chen X; Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China.
  • Shen Q; Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China.
  • Li Z; Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China.
  • Wan W; Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China.
  • Chen J; Guangdong Engineering and Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science , Jinan University , No. 601 Huangpu Avenue West , Tianhe District, Guangzhou 510632 , China.
  • Zhang J; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering , Zhejiang University , 38 Zheda Road , Hangzhou 310027 , China.
ACS Appl Mater Interfaces ; 12(1): 654-666, 2020 Jan 08.
Article in En | MEDLINE | ID: mdl-31808342
ABSTRACT
We reported that phosphorus-doped carbon nanotubes (P-CNTs), showing metal-like properties, can efficiently promote metal-free hydrogenation of nitrobenzene (1a) to aniline (2a) using molecular hydrogen (H2) as a reducing reagent under very mild conditions with a reaction temperature of only 50 °C. The kinetics of 1a hydrogenation over P-CNT reveals that the hydrogenation rate of 1a is a first-order dependence on the H2 pressure and the P-CNT loading level, and a zero-order dependence on 1a concentration, demonstrating the rate-determining step of H2 adsorption and activation over P-CNT. The activation energy of P-CNT-catalyzed 1a hydrogenation is 43 ± 3 kJ mol-1 with the turnover frequency around 3.60 ± 0.12 h-1 at 50 °C. In addition to 1a, the general applicability of the P-CNT-promoted metal-free hydrogenation process is further demonstrated by applying various functionalized nitroaromatics with wide industrial interest. The P-CNT shows both excellent yields and selectivities to hydrogenation with respect to reducible, labile, and strong leaving groups on the nitroaromatics molecules. The stability and reusability of the P-CNT demonstrate up to eight-time recycling without evident loss of activity and selectivity. In addition to hydrogenation, metal-free catalytic transfer hydrogenation of 1a is achieved with P-CNT using diverse hydrogen sources, including hydrazine hydrate (N2H4·H2O), carbon monoxide/water (CO/H2O), and formic acid/triethylamine (HCOOH/Et3N).
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2020 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2020 Document type: Article Affiliation country: China