Organic Dots Embedded in Mesostructured Silica Xerogel as High-Performance ECL Emitters: Preparation and Application for MicroRNA-126 Detection.
ACS Appl Mater Interfaces
; 12(3): 3945-3952, 2020 Jan 22.
Article
in En
| MEDLINE
| ID: mdl-31877251
Unlike the organic micro/nanocrystals prepared using an emerging reprecipitation method, a novel method of embedding 1-pyrenecarboxaldehyde dots (PycDs) into a mesostructured silica xerogel (PycDs@MSX) for use as electrochemiluminescence (ECL) emitters was first proposed to achieve an extremely strong ECL response, with peroxydisulfate (S2O82-) used as a coreactant. In this method, (i) PycDs@MSX could ensure the reversal of the PycDs environment from hydrophobic to hydrophilic and (ii) PycDs@MSX could provide massive porous channels, allowing for access of hydrophilic reactive intermediates (i.e., sulfate anion radicals, SO4â¢-), which could accelerate the rate of mass transfer and electron transfer between S2O82- and PycDs. Using Ag nanoparticles as a coreaction accelerator and a 3D DNA nanomachine as a signal amplification strategy, the proposed ECL biosensing platform was constructed and achieved ultrasensitive detection of microRNA-126 with an excellent linear range (from 100 aM to 100 pM) and a low detection limit (13.0 aM). More importantly, this work not only developed an innovative avenue to improve the ECL efficiency of organic emitters in aqueous phases but also provided a powerful strategy for biochemical analysis and disease diagnosis applications.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
MicroRNAs
/
Luminescent Measurements
Type of study:
Diagnostic_studies
/
Evaluation_studies
Limits:
Humans
Language:
En
Journal:
ACS Appl Mater Interfaces
Journal subject:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Year:
2020
Document type:
Article
Country of publication:
Estados Unidos