Your browser doesn't support javascript.
loading
Electronic structure of the parent compound of superconducting infinite-layer nickelates.
Hepting, M; Li, D; Jia, C J; Lu, H; Paris, E; Tseng, Y; Feng, X; Osada, M; Been, E; Hikita, Y; Chuang, Y-D; Hussain, Z; Zhou, K J; Nag, A; Garcia-Fernandez, M; Rossi, M; Huang, H Y; Huang, D J; Shen, Z X; Schmitt, T; Hwang, H Y; Moritz, B; Zaanen, J; Devereaux, T P; Lee, W S.
Affiliation
  • Hepting M; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Li D; Max Planck Institute for Solid State Research, Stuttgart, Germany.
  • Jia CJ; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Lu H; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA. chunjing@stanford.edu.
  • Paris E; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Tseng Y; Photon Science Division, Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland.
  • Feng X; Photon Science Division, Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland.
  • Osada M; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Been E; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Hikita Y; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Chuang YD; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Hussain Z; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Zhou KJ; Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
  • Nag A; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
  • Garcia-Fernandez M; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
  • Rossi M; Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
  • Huang HY; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Huang DJ; NSRRC, Hsinchu Science Park, Hsinchu, Taiwan.
  • Shen ZX; NSRRC, Hsinchu Science Park, Hsinchu, Taiwan.
  • Schmitt T; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Hwang HY; Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA, USA.
  • Moritz B; Photon Science Division, Swiss Light Source, Paul Scherrer Institut, Villigen, Switzerland.
  • Zaanen J; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Devereaux TP; Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
  • Lee WS; Instituut-Lorentz for theoretical Physics, Leiden University, Leiden, the Netherlands.
Nat Mater ; 19(4): 381-385, 2020 Apr.
Article in En | MEDLINE | ID: mdl-31959951
ABSTRACT
The search continues for nickel oxide-based materials with electronic properties similar to cuprate high-temperature superconductors1-10. The recent discovery of superconductivity in the doped infinite-layer nickelate NdNiO2 (refs. 11,12) has strengthened these efforts. Here, we use X-ray spectroscopy and density functional theory to show that the electronic structure of LaNiO2 and NdNiO2, while similar to the cuprates, includes significant distinctions. Unlike cuprates, the rare-earth spacer layer in the infinite-layer nickelate supports a weakly interacting three-dimensional 5d metallic state, which hybridizes with a quasi-two-dimensional, strongly correlated state with [Formula see text] symmetry in the NiO2 layers. Thus, the infinite-layer nickelate can be regarded as a sibling of the rare-earth intermetallics13-15, which are well known for heavy fermion behaviour, where the NiO2 correlated layers play an analogous role to the 4f states in rare-earth heavy fermion compounds. This Kondo- or Anderson-lattice-like 'oxide-intermetallic' replaces the Mott insulator as the reference state from which superconductivity emerges upon doping.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Mater Journal subject: CIENCIA / QUIMICA Year: 2020 Document type: Article Affiliation country: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Mater Journal subject: CIENCIA / QUIMICA Year: 2020 Document type: Article Affiliation country: Estados Unidos