Your browser doesn't support javascript.
loading
Performance of an up-flow anaerobic bio-electrochemical system (UBES) for treating sulfamethoxazole (SMX) antibiotic wastewater.
Hu, Dongxue; Min, Hongchao; Wang, Hongcheng; Zhao, Yuanyi; Cui, Yubo; Wu, Pan; Ge, Hui; Luo, Kongyan; Zhang, Lufeng; Liu, Wenyu; Wang, Aijie.
Affiliation
  • Hu D; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1
  • Min H; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1
  • Wang H; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China. Electronic address: wanghongcheng@hit.edu.cn.
  • Zhao Y; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1
  • Cui Y; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1
  • Wu P; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1
  • Ge H; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1
  • Luo K; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1
  • Zhang L; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1
  • Liu W; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, 18 Liaohe Road West, Dalian Economic and Technological Development Zone, Dalian 116600, PR China; College of Environment and Resources, Dalian Minzu University, 18 Liaohe West Road, Dalian 1
  • Wang A; School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, PR China.
Bioresour Technol ; 305: 123070, 2020 Feb 21.
Article in En | MEDLINE | ID: mdl-32120235
ABSTRACT
This paper focused on the feasibility and performance of an up-flow anaerobic bio-electrochemical system (UBES) for treating sulfamethoxazole (SMX) antibiotic wastewater at different COD loading rates (LRs) from 2.02 ± 0.13 to 6.09 ± 0.14 kgCOD/(m3·d). Open-circuit UBES had a lower average COD removal rate of 62.4 ± 4.7% in Run2, and the accumulation of volatile fatty acid (VFA) was occurred. However, closed-circuit UBES can alleviate the accumulation of VFA (which was decreased from 720.4 to 102.4 mg/L), the highest average COD, SMX removal rates were 85.7 ± 3.2% and 73.7 ± 2.0%, respectively. The closed-circuit UBES can withstand more than 3 times LR than open-circuit UBES, which proved that the ability of microorganisms to resist toxic substance stress was strengthened. And the mathematical models for pollutants removal rate were established and well interpreted the results, which also can guide the operation of UBES.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Bioresour Technol Journal subject: ENGENHARIA BIOMEDICA Year: 2020 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Bioresour Technol Journal subject: ENGENHARIA BIOMEDICA Year: 2020 Document type: Article