Designing an Herbarium Digitisation Workflow with Built-In Image Quality Management.
Biodivers Data J
; 8: e47051, 2020.
Article
in En
| MEDLINE
| ID: mdl-32269476
Digitisation of natural history collections has evolved from creating databases for the recording of specimens' catalogue and label data to include digital images of specimens. This has been driven by several important factors, such as a need to increase global accessibility to specimens and to preserve the original specimens by limiting their manual handling. The size of the collections pointed to the need of high throughput digitisation workflows. However, digital imaging of large numbers of fragile specimens is an expensive and time-consuming process that should be performed only once. To achieve this, the digital images produced need to be useful for the largest set of applications possible and have a potentially unlimited shelf life. The constraints on digitisation speed need to be balanced against the applicability and longevity of the images, which, in turn, depend directly on the quality of those images. As a result, the quality criteria that specimen images need to fulfil influence the design, implementation and execution of digitisation workflows. Different standards and guidelines for producing quality research images from specimens have been proposed; however, their actual adaptation to suit the needs of different types of specimens requires further analysis. This paper presents the digitisation workflow implemented by Meise Botanic Garden (MBG). This workflow is relevant because of its modular design, its strong focus on image quality assessment, its flexibility that allows combining in-house and outsourced digitisation, processing, preservation and publishing facilities and its capacity to evolve for integrating alternative components from different sources. The design and operation of the digitisation workflow is provided to showcase how it was derived, with particular attention to the built-in audit trail within the workflow, which ensures the scalable production of high-quality specimen images and how this audit trail ensures that new modules do not affect either the speed of imaging or the quality of the images produced.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Biodivers Data J
Year:
2020
Document type:
Article
Country of publication:
Bulgaria