Your browser doesn't support javascript.
loading
Oxygen Vacancies Enabled Porous SnO2 Thin Films for Highly Sensitive Detection of Triethylamine at Room Temperature.
Xu, Yongshan; Zheng, Lingli; Yang, Chen; Zheng, Wei; Liu, Xianghong; Zhang, Jun.
Affiliation
  • Xu Y; College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China.
  • Zheng L; College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China.
  • Yang C; College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China.
  • Zheng W; College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China.
  • Liu X; College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China.
  • Zhang J; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
ACS Appl Mater Interfaces ; 12(18): 20704-20713, 2020 May 06.
Article in En | MEDLINE | ID: mdl-32293859
Detection of volatile organic compounds (VOCs) at room temperature (RT) currently remains a challenge for metal oxide semiconductor (MOS) gas sensors. Herein, for the first time, we report on the utilization of porous SnO2 thin films for RT detection of VOCs by defect engineering of oxygen vacancies. The oxygen vacancies in the three-dimensional-ordered SnO2 thin films, prepared by a colloidal template method, can be readily manipulated by thermal annealing at different temperatures. It is found that oxygen vacancies play an important role in the RT sensing performances, which successfully enables the sensor to respond to triethylamine (TEA) with an ultrahigh response, for example, 150.5-10 ppm TEA in a highly selective manner. In addition, the sensor based on oxygen vacancy-rich SnO2 thin films delivers a fast response and recovery speed (53 and 120 s), which can be further shortened to 10 and 36 s by elevating the working temperature to 120 °C. Notably, a low detection limit of 110 ppb has been obtained at RT. The overall performances surpass most previous reports on TEA detection at RT. The outstanding sensing properties can be attributed to the porous structure with abundant oxygen vacancies, which can improve the adsorption of molecules. The oxygen vacancy engineering strategy and the on-chip fabrication of porous MOS thin film sensing layers deliver great potential for creating high-performance RT sensors.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Diagnostic_studies Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2020 Document type: Article Affiliation country: China Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Diagnostic_studies Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2020 Document type: Article Affiliation country: China Country of publication: Estados Unidos