Your browser doesn't support javascript.
loading
Hot Corrosion and Mechanical Performance of Repaired Inconel 718 Components via Laser Additive Manufacturing.
Zhang, Qunli; Zhang, Jie; Zhuang, Yifan; Lu, Jinzhong; Yao, Jianhua.
Affiliation
  • Zhang Q; Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310023, China.
  • Zhang J; Collaborative Innovation Center of High-end Laser Manufacturing Equipment, Zhejiang University of Technology, Hangzhou 310023, China.
  • Zhuang Y; Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310023, China.
  • Lu J; Collaborative Innovation Center of High-end Laser Manufacturing Equipment, Zhejiang University of Technology, Hangzhou 310023, China.
  • Yao J; Institute of Laser Advanced Manufacturing, Zhejiang University of Technology, Hangzhou 310023, China.
Materials (Basel) ; 13(9)2020 May 04.
Article in En | MEDLINE | ID: mdl-32375341
ABSTRACT
Hot corrosion is one of the crucial failure modes of Ni-based superalloy components operating at high temperatures, which inevitably affects the subsequent mechanical properties of the alloys. In this research, damaged Inconel 718 alloy components with a pre-made trapezoid groove are repaired using laser additive manufacturing technique, and the change mechanisms of the microstructure and tensile properties of the repaired Inconel 718 alloy due to the hot corrosion in the salt mixture of 87.5 wt.% Na2SO4 + 5 wt.% NaCl + 7.5 wt.% NaNO3 at 650 °C for different durations are investigated. The results show that oxidation and Cr-depletion occur on the repaired components due to the hot corrosion, and the corrosion products are mainly composed of Cr2O3, Fe3O4, and Ni3S2. The tensile strength and elongation of the as-repaired specimens are 736.6 MPa and 12.5%, respectively. After being hot corroded for 50 h, the tensile strength increases to 1022.9 MPa and elongation decreases to 1.7%. However, after being hot corroded for 150 h, both tensile strength and elongation of the repaired specimens drop to 955.8 MPa and 1.2%, respectively. The mechanical performance alteration is highly related to thermal effects instead of the molten salt attack.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Materials (Basel) Year: 2020 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Materials (Basel) Year: 2020 Document type: Article Affiliation country: China