Your browser doesn't support javascript.
loading
Hydroxyl radical scavenging factor measurement using a fluorescence excitation-emission matrix and parallel factor analysis in ultraviolet advanced oxidation processes.
Hwang, Tae-Mun; Nam, Sook-Hyun; Lee, Juwon; Koo, Jae-Wuk; Kim, Eunju; Kwon, Minhwan.
Affiliation
  • Hwang TM; Korea Institute of Civil Engineering and Building Technology, 283 Goyangdar-Ro, Ilsan-Gu, Goyang-Si, Gyeonggi-Do, 411-712, Republic of Korea; Korea University of Science & Technology, 217 Gajung-ro Yuseong-gu, Daejeon, 305-333, Republic of Korea. Electronic address: taemun@kict.re.kr.
  • Nam SH; Korea Institute of Civil Engineering and Building Technology, 283 Goyangdar-Ro, Ilsan-Gu, Goyang-Si, Gyeonggi-Do, 411-712, Republic of Korea.
  • Lee J; Korea Institute of Civil Engineering and Building Technology, 283 Goyangdar-Ro, Ilsan-Gu, Goyang-Si, Gyeonggi-Do, 411-712, Republic of Korea; Korea University of Science & Technology, 217 Gajung-ro Yuseong-gu, Daejeon, 305-333, Republic of Korea.
  • Koo JW; Korea Institute of Civil Engineering and Building Technology, 283 Goyangdar-Ro, Ilsan-Gu, Goyang-Si, Gyeonggi-Do, 411-712, Republic of Korea.
  • Kim E; Korea Institute of Civil Engineering and Building Technology, 283 Goyangdar-Ro, Ilsan-Gu, Goyang-Si, Gyeonggi-Do, 411-712, Republic of Korea.
  • Kwon M; Department of Environmental Engineering (YIEST), Yonsei University, Republic of Korea.
Chemosphere ; 259: 127396, 2020 Nov.
Article in En | MEDLINE | ID: mdl-32645596
ABSTRACT
The performance of the UV/H2O2 advanced oxidation process (AOP) is dependent on water quality parameters, including the UV absorbance coefficient at 254 nm and hydroxyl radical (•OH) water background demand (scavenging factor, s-1). The •OH scavenging factor represents the •OH scavenging rate of the background substances in the water matrix, and it is known to be one of the key parameters to predict the performance of the UV/H2O2 process. The •OH scavenging factor has been determined experimentally by using a probe compound such as pCBA and rhodamine B. The experimental method has been validated to accurately predict the micropollutants removal in the UV/H2O2 process, but there is a need for an easier and simple method of determining the OH scavenging factor. We evaluated the alternative method to analyze the •OH scavenging factor using fluorescence excitation-emission matrix and parallel factor analysis (F-EEM/PARAFAC). The correlation between •OH scavenging factor and the spectroscopic characteristics and structure of different organic matter types was evaluated. Organic matter was characterized using a fluorescence excitation-emission matrix, parallel factor analysis, and liquid chromatography-organic carbon detection. Second-order reaction rates of humic acid sodium salt, sodium alginate, Suwannee River humic acid and bovine serum albumin were calculated as 1.30 × 108 M-1 s-1, 1.39 × 108 M-1 s-1, 1.03 × 108 M-1 s-1, and 3.17 × 107 M-1 s-1, respectively. Results of PARAFAC analysis, the ratio of humic and fulvic fluorescence component 2 to terrestrial humic-like fluorescence component 1 (C2/C1), and •OH scavenging factor showed high linearity. A predictive model, which combines with the F-EEM/PARAFAC method, predicted the optimal UV and H2O2 dose to achieve target compound removal.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Water Pollutants, Chemical / Water Purification Type of study: Prognostic_studies Language: En Journal: Chemosphere Year: 2020 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Water Pollutants, Chemical / Water Purification Type of study: Prognostic_studies Language: En Journal: Chemosphere Year: 2020 Document type: Article