Your browser doesn't support javascript.
loading
Isoflurane-Induced Burst Suppression Is a Thalamus-Modulated, Focal-Onset Rhythm With Persistent Local Asynchrony and Variable Propagation Patterns in Rats.
Ming, Qianwen; Liou, Jyun-You; Yang, Fan; Li, Jing; Chu, Chaojia; Zhou, Qingchen; Wu, Dan; Xu, Shujia; Luo, Peijuan; Liang, Jianmin; Li, Dan; Pryor, Kane O; Lin, Weihong; Schwartz, Theodore H; Ma, Hongtao.
Affiliation
  • Ming Q; Department of Neurology, The First Hospital of Jilin University, Changchun, China.
  • Liou JY; Department of Anesthesiology, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, United States.
  • Yang F; Department of Neurology, The First Hospital of Jilin University, Changchun, China.
  • Li J; Department of Neurology, The First Hospital of Jilin University, Changchun, China.
  • Chu C; Department of Neurology, The First Hospital of Jilin University, Changchun, China.
  • Zhou Q; Department of Radiology, The First Hospital of Jilin University, Changchun, China.
  • Wu D; Department of Radiology, The First Hospital of Jilin University, Changchun, China.
  • Xu S; Department of Radiology, The First Hospital of Jilin University, Changchun, China.
  • Luo P; Department of Neurology, The First Hospital of Jilin University, Changchun, China.
  • Liang J; Department of Pediatrics, The First Hospital of Jilin University, Changchun, China.
  • Li D; Department of Radiology, The First Hospital of Jilin University, Changchun, China.
  • Pryor KO; Department of Anesthesiology, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY, United States.
  • Lin W; Department of Neurology, The First Hospital of Jilin University, Changchun, China.
  • Schwartz TH; Department of Neurological Surgery and Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, NewYork-Presbyterian Hospital, New York, NY, United States.
  • Ma H; Department of Neurology, The First Hospital of Jilin University, Changchun, China.
Front Syst Neurosci ; 14: 599781, 2020.
Article in En | MEDLINE | ID: mdl-33510621
ABSTRACT

Background:

Inhalational anesthetic-induced burst suppression (BS) is classically considered a bilaterally synchronous rhythm. However, local asynchrony has been predicted in theoretical studies and reported in patients with pre-existing focal pathology.

Method:

We used high-speed widefield calcium imaging to study the spatiotemporal dynamics of isoflurane-induced BS in rats.

Results:

We found that isoflurane-induced BS is not a globally synchronous rhythm. In the neocortex, neural activity first emerged in a spatially shifting, variably localized focus. Subsequent propagation across the whole cortex was rapid, typically within <100 milliseconds, giving the superficial resemblance to global synchrony. Neural activity remained locally asynchronous during the bursts, forming complex recurrent propagating waves. Despite propagation variability, spatial sequences of burst propagation were largely preserved between the hemispheres, and neural activity was highly correlated between the homotopic areas. The critical role of the thalamus in cortical burst initiation was demonstrated by using unilateral thalamic tetrodotoxin injection.

Conclusion:

The classical impression that anesthetics-induced BS is a state of global brain synchrony is inaccurate. Bursts are a series of shifting local cortical events facilitated by thalamic projection that unfold as rapid, bilaterally asynchronous propagating waves.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Front Syst Neurosci Year: 2020 Document type: Article Affiliation country: China Publication country: CH / SUIZA / SUÍÇA / SWITZERLAND

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Front Syst Neurosci Year: 2020 Document type: Article Affiliation country: China Publication country: CH / SUIZA / SUÍÇA / SWITZERLAND