Your browser doesn't support javascript.
loading
N-acetyl-lysyltyrosylcysteine amide, a novel systems pharmacology agent, reduces bronchopulmonary dysplasia in hyperoxic neonatal rat pups.
Teng, Ru-Jeng; Jing, Xigang; Martin, Dustin P; Hogg, Neil; Haefke, Aaron; Konduri, Girija G; Day, Billy W; Naylor, Stephen; Pritchard, Kirkwood A.
Affiliation
  • Teng RJ; Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, WI, USA.
  • Jing X; Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, WI, USA.
  • Martin DP; Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA; ReNeuroGen LLC, Milwaukee, WI, USA.
  • Hogg N; Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.
  • Haefke A; Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA.
  • Konduri GG; Division of Neonatology, Department of Pediatrics, Medical College of Wisconsin, Wauwatosa, WI, USA.
  • Day BW; ReNeuroGen LLC, Milwaukee, WI, USA.
  • Naylor S; ReNeuroGen LLC, Milwaukee, WI, USA.
  • Pritchard KA; Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA; ReNeuroGen LLC, Milwaukee, WI, USA. Electronic address: kpritch@mcw.edu.
Free Radic Biol Med ; 166: 73-89, 2021 04.
Article in En | MEDLINE | ID: mdl-33607217
ABSTRACT
Bronchopulmonary dysplasia (BPD) is caused primarily by oxidative stress and inflammation. To induce BPD, neonatal rat pups were raised in hyperoxic (>90% O2) environments from day one (P1) until day ten (P10) and treated with N-acetyl-lysyltyrosylcysteine amide (KYC). In vivo studies showed that KYC improved lung complexity, reduced myeloperoxidase (MPO) positive (+) myeloid cell counts, MPO protein, chlorotyrosine formation, increased endothelial cell CD31 expression, decreased 8-OH-dG and Cox-1/Cox-2, HMGB1, RAGE, TLR4, increased weight gain and improved survival in hyperoxic pups. EPR studies confirmed that MPO reaction mixtures oxidized KYC to a KYC thiyl radical. Adding recombinant HMGB1 to the MPO reaction mixture containing KYC resulted in KYC thiylation of HMGB1. In rat lung microvascular endothelial cell (RLMVEC) cultures, KYC thiylation of RLMVEC proteins was increased the most in RLMVEC cultures treated with MPO + H2O2, followed by H2O2, and then KYC alone. KYC treatment of hyperoxic pups decreased total HMGB1 in lung lysates, increased KYC thiylation of HMGB1, terminal HMGB1 thiol oxidation, decreased HMGB1 association with TLR4 and RAGE, and shifted HMGB1 in lung lysates from a non-acetylated to a lysyl-acetylated isoform, suggesting that KYC reduced lung cell death and that recruited immune cells had become the primary source of HMGB1 released into the hyperoxic lungs. MPO-dependent and independent KYC-thiylation of Keap1 were both increased in RLMVEC cultures. Treating hyperoxic pups with KYC increased KYC thiylation and S-glutathionylation of Keap1, and Nrf2 activation. These data suggest that KYC is a novel system pharmacological agent that exploits MPO to inhibit toxic oxidant production and is oxidized into a thiyl radical that inactivates HMGB1, activates Nrf2, and increases antioxidant enzyme expression to improve lung complexity and reduce BPD in hyperoxic rat pups.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bronchopulmonary Dysplasia / Hyperoxia Limits: Animals / Humans / Newborn Language: En Journal: Free Radic Biol Med Journal subject: BIOQUIMICA / MEDICINA Year: 2021 Document type: Article Affiliation country: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Bronchopulmonary Dysplasia / Hyperoxia Limits: Animals / Humans / Newborn Language: En Journal: Free Radic Biol Med Journal subject: BIOQUIMICA / MEDICINA Year: 2021 Document type: Article Affiliation country: Estados Unidos