Your browser doesn't support javascript.
loading
Biophysical analysis of the plant-specific GIPC sphingolipids reveals multiple modes of membrane regulation.
Mamode Cassim, Adiilah; Navon, Yotam; Gao, Yu; Decossas, Marion; Fouillen, Laetitia; Grélard, Axelle; Nagano, Minoru; Lambert, Olivier; Bahammou, Delphine; Van Delft, Pierre; Maneta-Peyret, Lilly; Simon-Plas, Françoise; Heux, Laurent; Jean, Bruno; Fragneto, Giovanna; Mortimer, Jenny C; Deleu, Magali; Lins, Laurence; Mongrand, Sébastien.
Affiliation
  • Mamode Cassim A; Laboratoire de Biogènese Membranaire, UMR 5200, CNRS, Université de Bordeaux, Villenave d'Ornon Cedex, France.
  • Navon Y; Centre de Recherches sur les Macromolécules Végétales (CERMAV), Univ. Grenoble Alpes, CNRS, Grenoble, France.
  • Gao Y; Joint BioEnergy Institute, Emeryville, California, USA; Environmental and Systems Genomics, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
  • Decossas M; Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), CNRS, Univ. Bordeaux, Institut Polytechnique Bordeaux, All. Geoffroy Saint-Hilaire, Pessac, France.
  • Fouillen L; Laboratoire de Biogènese Membranaire, UMR 5200, CNRS, Université de Bordeaux, Villenave d'Ornon Cedex, France.
  • Grélard A; Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), CNRS, Univ. Bordeaux, Institut Polytechnique Bordeaux, All. Geoffroy Saint-Hilaire, Pessac, France.
  • Nagano M; Laboratoire de Biogènese Membranaire, UMR 5200, CNRS, Université de Bordeaux, Villenave d'Ornon Cedex, France; College of Life Sciences, Ritsumeikan University, Kusatsu, Japan.
  • Lambert O; Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR5248 CBMN), CNRS, Univ. Bordeaux, Institut Polytechnique Bordeaux, All. Geoffroy Saint-Hilaire, Pessac, France.
  • Bahammou D; Laboratoire de Biogènese Membranaire, UMR 5200, CNRS, Université de Bordeaux, Villenave d'Ornon Cedex, France.
  • Van Delft P; Laboratoire de Biogènese Membranaire, UMR 5200, CNRS, Université de Bordeaux, Villenave d'Ornon Cedex, France.
  • Maneta-Peyret L; Laboratoire de Biogènese Membranaire, UMR 5200, CNRS, Université de Bordeaux, Villenave d'Ornon Cedex, France.
  • Simon-Plas F; Agroécologie, AgroSup Dijon, CNRS, INRA, Univ. Bourgogne Franche-Comté, Dijon, France.
  • Heux L; Centre de Recherches sur les Macromolécules Végétales (CERMAV), Univ. Grenoble Alpes, CNRS, Grenoble, France.
  • Jean B; Centre de Recherches sur les Macromolécules Végétales (CERMAV), Univ. Grenoble Alpes, CNRS, Grenoble, France.
  • Fragneto G; Institut Laue-Langevin ILL, Grenoble, France.
  • Mortimer JC; Joint BioEnergy Institute, Emeryville, California, USA; Environmental and Systems Genomics, Lawrence Berkeley National Laboratory, Berkeley, California, USA.
  • Deleu M; Laboratoire de Biophysique Moléculaire aux Interfaces, TERRA Research Centre, GX ABT, Université de Liège, Gembloux, Belgium.
  • Lins L; Laboratoire de Biophysique Moléculaire aux Interfaces, TERRA Research Centre, GX ABT, Université de Liège, Gembloux, Belgium.
  • Mongrand S; Laboratoire de Biogènese Membranaire, UMR 5200, CNRS, Université de Bordeaux, Villenave d'Ornon Cedex, France. Electronic address: sebastien.mongrand@u-bordeaux.fr.
J Biol Chem ; 296: 100602, 2021.
Article in En | MEDLINE | ID: mdl-33785359
The plant plasma membrane (PM) is an essential barrier between the cell and the external environment, controlling signal perception and transmission. It consists of an asymmetrical lipid bilayer made up of three different lipid classes: sphingolipids, sterols, and phospholipids. The glycosyl inositol phosphoryl ceramides (GIPCs), representing up to 40% of total sphingolipids, are assumed to be almost exclusively in the outer leaflet of the PM. However, their biological role and properties are poorly defined. In this study, we investigated the role of GIPCs in membrane organization. Because GIPCs are not commercially available, we developed a protocol to extract and isolate GIPC-enriched fractions from eudicots (cauliflower and tobacco) and monocots (leek and rice). Lipidomic analysis confirmed the presence of trihydroxylated long chain bases and 2-hydroxylated very long-chain fatty acids up to 26 carbon atoms. The glycan head groups of the GIPCs from monocots and dicots were analyzed by gas chromatograph-mass spectrometry, revealing different sugar moieties. Multiple biophysics tools, namely Langmuir monolayer, ζ-Potential, light scattering, neutron reflectivity, solid state 2H-NMR, and molecular modeling, were used to investigate the physical properties of the GIPCs, as well as their interaction with free and conjugated phytosterols. We showed that GIPCs increase the thickness and electronegativity of model membranes, interact differentially with the different phytosterols species, and regulate the gel-to-fluid phase transition during temperature variations. These results unveil the multiple roles played by GIPCs in the plant PM.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Plants / Sphingolipids / Cell Membrane Language: En Journal: J Biol Chem Year: 2021 Document type: Article Affiliation country: Francia Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Plants / Sphingolipids / Cell Membrane Language: En Journal: J Biol Chem Year: 2021 Document type: Article Affiliation country: Francia Country of publication: Estados Unidos