Your browser doesn't support javascript.
loading
Mutagenesis and homology modeling reveal a predicted pocket of lysophosphatidylcholine acyltransferase 2 to catch Acyl-CoA.
Hamano, Fumie; Matoba, Kazuaki; Hashidate-Yoshida, Tomomi; Suzuki, Tomoyuki; Miura, Kiyotake; Hishikawa, Daisuke; Harayama, Takeshi; Yuki, Koichi; Kita, Yoshihiro; Noda, Nobuo N; Shimizu, Takao; Shindou, Hideo.
Affiliation
  • Hamano F; Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.
  • Matoba K; Life Sciences Core Facility, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
  • Hashidate-Yoshida T; Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan.
  • Suzuki T; Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.
  • Miura K; Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.
  • Hishikawa D; Department of Respiratory Medicine, The University of Tokyo, Tokyo, Japan.
  • Harayama T; Department of Biochemistry and Molecular Biology, The University of Tokyo, Tokyo, Japan.
  • Yuki K; Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.
  • Kita Y; Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
  • Noda NN; Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.
  • Shimizu T; Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France.
  • Shindou H; Department of Biochemistry and Molecular Biology, The University of Tokyo, Tokyo, Japan.
FASEB J ; 35(6): e21501, 2021 06.
Article in En | MEDLINE | ID: mdl-33956375
ABSTRACT
Platelet-activating factor (PAF) is a potent proinflammatory phospholipid mediator that elicits various cellular functions and promotes several pathological events, including anaphylaxis and neuropathic pain. PAF is biosynthesized by two types of lyso-PAF acetyltransferases lysophosphatidylcholine acyltransferase 1 (LPCAT1) and LPCAT2, which are constitutive and inducible forms of lyso-PAF acetyltransferase, respectively. Because LPCAT2 mainly produces PAF under inflammatory stimuli, understanding the structure of LPCAT2 is important for developing specific drugs against PAF-related inflammatory diseases. Although the structure of LPCAT2 has not been determined, the crystal structure was reported for Thermotoga maritima PlsC, an enzyme in the same gene family as LPCAT2. Here, we identified residues in mouse LPCAT2 essential for its enzymatic activity and a potential acyl-coenzyme A (CoA)-binding pocket, based on homology modeling of mouse LPCAT2 with PlsC. We also found that Ala115 of mouse LPCAT2 was important for acyl-CoA selectivity. In conclusion, these results predict the three-dimensional (3D) structure of mouse LPCAT2. Our findings have implications for the future development of new drugs against PAF-related diseases.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Acyl Coenzyme A / Models, Molecular / 1-Acylglycerophosphocholine O-Acyltransferase / Mutation Type of study: Prognostic_studies / Risk_factors_studies Limits: Animals Language: En Journal: FASEB J Journal subject: BIOLOGIA / FISIOLOGIA Year: 2021 Document type: Article Affiliation country: Japón

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Acyl Coenzyme A / Models, Molecular / 1-Acylglycerophosphocholine O-Acyltransferase / Mutation Type of study: Prognostic_studies / Risk_factors_studies Limits: Animals Language: En Journal: FASEB J Journal subject: BIOLOGIA / FISIOLOGIA Year: 2021 Document type: Article Affiliation country: Japón