Your browser doesn't support javascript.
loading
Ribosome Protection Proteins-"New" Players in the Global Arms Race with Antibiotic-Resistant Pathogens.
Ero, Rya; Yan, Xin-Fu; Gao, Yong-Gui.
Affiliation
  • Ero R; Department of Molecular Biology, Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia.
  • Yan XF; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
  • Gao YG; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
Int J Mol Sci ; 22(10)2021 May 19.
Article in En | MEDLINE | ID: mdl-34069640
ABSTRACT
Bacteria have evolved an array of mechanisms enabling them to resist the inhibitory effect of antibiotics, a significant proportion of which target the ribosome. Indeed, resistance mechanisms have been identified for nearly every antibiotic that is currently used in clinical practice. With the ever-increasing list of multi-drug-resistant pathogens and very few novel antibiotics in the pharmaceutical pipeline, treatable infections are likely to become life-threatening once again. Most of the prevalent resistance mechanisms are well understood and their clinical significance is recognized. In contrast, ribosome protection protein-mediated resistance has flown under the radar for a long time and has been considered a minor factor in the clinical setting. Not until the recent discovery of the ATP-binding cassette family F protein-mediated resistance in an extensive list of human pathogens has the significance of ribosome protection proteins been truly appreciated. Understanding the underlying resistance mechanism has the potential to guide the development of novel therapeutic approaches to evade or overcome the resistance. In this review, we discuss the latest developments regarding ribosome protection proteins focusing on the current antimicrobial arsenal and pharmaceutical pipeline as well as potential implications for the future of fighting bacterial infections in the time of "superbugs."
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ribosomal Proteins / Ribosomes / Drug Resistance, Microbial Type of study: Prognostic_studies Aspects: Determinantes_sociais_saude Language: En Journal: Int J Mol Sci Year: 2021 Document type: Article Affiliation country: Estonia

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ribosomal Proteins / Ribosomes / Drug Resistance, Microbial Type of study: Prognostic_studies Aspects: Determinantes_sociais_saude Language: En Journal: Int J Mol Sci Year: 2021 Document type: Article Affiliation country: Estonia