Your browser doesn't support javascript.
loading
Unzipping Carbon Nanotube Bundles through NH-π Stacking for Enhanced Electrical and Thermal Transport.
Wang, Shuiliang; Huang, Zhequn; Shi, Wenbo; Lee, Dongwook; Wang, Qixiang; Shang, Wen; Stein, Yosi; Shao-Horn, Yang; Deng, Tao; Wardle, Brian L; Cui, Kehang.
Affiliation
  • Wang S; School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Huang Z; Zhiyuan Innovative Research Center, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Shi W; Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
  • Lee D; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
  • Wang Q; School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Shang W; School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Stein Y; Analog Devices Inc. (ADI), Norwood, Massachusetts 02062, United States.
  • Shao-Horn Y; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
  • Deng T; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
  • Wardle BL; School of Materials Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
  • Cui K; Center for Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China.
ACS Appl Mater Interfaces ; 13(24): 28583-28592, 2021 Jun 23.
Article in En | MEDLINE | ID: mdl-34110139
Bundling of single-walled carbon nanotubes (SWCNTs) significantly undermines their superior thermal and electrical properties. Realizing stable, homogeneous, and surfactant-free dispersion of SWCNTs in solvents and composites has long been regarded as a key challenge. Here, we report amine-containing aromatic and cyclohexane molecules, which are common chain extenders (CEs) for epoxy curing in industry, can be used to effectively disperse CNTs. We achieve single-tube-level dispersion of SWCNTs in CE solvents, as demonstrated by the strong chirality-dependent absorption and photoluminescence emission. The SWCNT-CE dispersion remains stable under ambient conditions for months. The excellent dispersibility and stability are attributed to the formation of an n-type charge-transfer complex through the NH-π interaction between the amine group of CEs and the delocalized π bond of SWCNTs, which is confirmed by the negative Seebeck coefficient of the CE-functionalized SWCNT films, the red shift of the G band in the Raman spectra, and the NH-π peak in X-ray photoelectron spectroscopy. The high dispersibility of CEs significantly improves the electrical and thermal transport of macroscale CNT assemblies. The sheet resistance of the CE-dispersed SWCNT thin films reaches 161 Ω sq-1 at 80.8% optical transmittance after functional modification by HNO3. Moreover, the CEs cross-link CNTs and epoxy molecules, forming a pathway for phonon transport in CNT/epoxy nanocomposites. The thermal conductivity of the CE-CNT-epoxy composite is enhanced by 1850% compared with the original epoxy, which is the highest enhancement reported to date for CNT/epoxy nanocomposites. The CE-based NH-π interaction provides a new paradigm for the effective and stable dispersion of SWCNTs in a facile and scalable process.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2021 Document type: Article Affiliation country: China Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2021 Document type: Article Affiliation country: China Country of publication: Estados Unidos