Your browser doesn't support javascript.
loading
Transposable elements and introgression introduce genetic variation in the invasive ant Cardiocondyla obscurior.
Errbii, Mohammed; Keilwagen, Jens; Hoff, Katharina J; Steffen, Raphael; Altmüller, Janine; Oettler, Jan; Schrader, Lukas.
Affiliation
  • Errbii M; Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
  • Keilwagen J; Institute for Biosafety in Plant Biotechnology, Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Quedlinburg, Germany.
  • Hoff KJ; Institute of Mathematics and Computer Science, University of Greifswald, Greifswald, Germany.
  • Steffen R; Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany.
  • Altmüller J; Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
  • Oettler J; Cologne Center for Genomics, Institute of Human Genetics, University of Cologne, Cologne, Germany.
  • Schrader L; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Genomics, Berlin, Germany.
Mol Ecol ; 30(23): 6211-6228, 2021 12.
Article in En | MEDLINE | ID: mdl-34324751
ABSTRACT
Introduced populations of invasive organisms have to cope with novel environmental challenges, while having reduced genetic variation caused by founder effects. The mechanisms associated with this "genetic paradox of invasive species" has received considerable attention, yet few studies have examined the genomic architecture of invasive species. Populations of the heart node ant Cardiocondyla obscurior belong to two distinct lineages, a New World lineage so far only found in Latin America and a more globally distributed Old World lineage. In the present study, we use population genomic approaches to compare populations of the two lineages with apparent divergent invasive potential. We find that the strong genetic differentiation of the two lineages began at least 40,000 generations ago and that activity of transposable elements (TEs) has contributed significantly to the divergence of both lineages, possibly linked to the very unusual genomic distribution of TEs in this species. Furthermore, we show that introgression from the Old World lineage is a dominant source of genetic diversity in the New World lineage, despite the lineages' strong genetic differentiation. Our study uncovers mechanisms underlying novel genetic variation in introduced populations of C. obscurior that could contribute to the species' adaptive potential.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ants / DNA Transposable Elements Limits: Animals Language: En Journal: Mol Ecol Journal subject: BIOLOGIA MOLECULAR / SAUDE AMBIENTAL Year: 2021 Document type: Article Affiliation country: Alemania

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ants / DNA Transposable Elements Limits: Animals Language: En Journal: Mol Ecol Journal subject: BIOLOGIA MOLECULAR / SAUDE AMBIENTAL Year: 2021 Document type: Article Affiliation country: Alemania