Your browser doesn't support javascript.
loading
Robust Pressure Sensor in SOI Technology with Butterfly Wiring for Airfoil Integration.
Haus, Jan Niklas; Schwerter, Martin; Schneider, Michael; Gäding, Marcel; Leester-Schädel, Monika; Schmid, Ulrich; Dietzel, Andreas.
Affiliation
  • Haus JN; Institute of Microtechnology, TU Braunschweig, 38124 Brunswick, Germany.
  • Schwerter M; Institute of Microtechnology, TU Braunschweig, 38124 Brunswick, Germany.
  • Schneider M; Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria.
  • Gäding M; Institute of Microtechnology, TU Braunschweig, 38124 Brunswick, Germany.
  • Leester-Schädel M; Institute of Microtechnology, TU Braunschweig, 38124 Brunswick, Germany.
  • Schmid U; Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna, Austria.
  • Dietzel A; Institute of Microtechnology, TU Braunschweig, 38124 Brunswick, Germany.
Sensors (Basel) ; 21(18)2021 Sep 13.
Article in En | MEDLINE | ID: mdl-34577355
ABSTRACT
Current research in the field of aviation considers actively controlled high-lift structures for future civil airplanes. Therefore, pressure data must be acquired from the airfoil surface without influencing the flow due to sensor application. For experiments in the wind and water tunnel, as well as for the actual application, the requirements for the quality of the airfoil surface are demanding. Consequently, a new class of sensors is required, which can be flush-integrated into the airfoil surface, may be used under wet conditions-even under water-and should withstand the harsh environment of a high-lift scenario. A new miniature silicon on insulator (SOI)-based MEMS pressure sensor, which allows integration into airfoils in a flip-chip configuration, is presented. An internal, highly doped silicon wiring with "butterfly" geometry combined with through glass via (TGV) technology enables a watertight and application-suitable chip-scale-package (CSP). The chips were produced by reliable batch microfabrication including femtosecond laser processes at the wafer-level. Sensor characterization demonstrates a high resolution of 38 mVV-1 bar-1. The stepless ultra-smooth and electrically passivated sensor surface can be coated with thin surface protection layers to further enhance robustness against harsh environments. Accordingly, protective coatings of amorphous hydrogenated silicon nitride (a-SiNH) and amorphous hydrogenated silicon carbide (a-SiCH) were investigated in experiments simulating environments with high-velocity impacting particles. Topographic damage quantification demonstrates the superior robustness of a-SiCH coatings and validates their applicability to future sensors.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Microtechnology Language: En Journal: Sensors (Basel) Year: 2021 Document type: Article Affiliation country: Alemania Publication country: CH / SUIZA / SUÍÇA / SWITZERLAND

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Microtechnology Language: En Journal: Sensors (Basel) Year: 2021 Document type: Article Affiliation country: Alemania Publication country: CH / SUIZA / SUÍÇA / SWITZERLAND