Your browser doesn't support javascript.
loading
18F-FMISO PET Imaging Identifies Hypoxia and Immunosuppressive Tumor Microenvironments and Guides Targeted Evofosfamide Therapy in Tumors Refractory to PD-1 and CTLA-4 Inhibition.
Reeves, Kirsten M; Song, Patrick N; Angermeier, Allyson; Della Manna, Deborah; Li, Yufeng; Wang, Jianbo; Yang, Eddy S; Sorace, Anna G; Larimer, Benjamin M.
Affiliation
  • Reeves KM; Department of Radiology. The University of Alabama at Birmingham, Birmingham, Alabama.
  • Song PN; O'Neal Comprehensive Cancer Center. The University of Alabama at Birmingham, Birmingham, Alabama.
  • Angermeier A; Graduate Biomedical Science Program. The University of Alabama at Birmingham, Birmingham, Alabama.
  • Della Manna D; Department of Radiology. The University of Alabama at Birmingham, Birmingham, Alabama.
  • Li Y; Graduate Biomedical Science Program. The University of Alabama at Birmingham, Birmingham, Alabama.
  • Wang J; O'Neal Comprehensive Cancer Center. The University of Alabama at Birmingham, Birmingham, Alabama.
  • Yang ES; Cell, Developmental and Integrative Biology. The University of Alabama at Birmingham, Birmingham, Alabama.
  • Sorace AG; O'Neal Comprehensive Cancer Center. The University of Alabama at Birmingham, Birmingham, Alabama.
  • Larimer BM; Radiation Oncology. The University of Alabama at Birmingham, Birmingham, Alabama.
Clin Cancer Res ; 28(2): 327-337, 2022 01 15.
Article in En | MEDLINE | ID: mdl-34615724
PURPOSE: Hypoxia is a common characteristic of many tumor microenvironments, and it has been shown to promote suppression of antitumor immunity. Despite strong biological rationale, longitudinal correlation of hypoxia and response to immunotherapy has not been investigated. EXPERIMENTAL DESIGN: In this study, we probed the tumor and its surrounding microenvironment with 18F-FMISO PET imaging to noninvasively quantify tumor hypoxia in vivo prior to and during PD-1 and CTLA-4 checkpoint blockade in preclinical models of breast and colon cancer. RESULTS: Longitudinal imaging identified hypoxia as an early predictive biomarker of therapeutic response (prior to anatomic changes in tumor volume) with a decreasing standard uptake value (SUV) ratio in tumors that effectively respond to therapy. PET signal correlated with ex vivo markers of tumor immune response including cytokines (IFNγ, GZMB, and TNF), damage-associated molecular pattern receptors (TLR2/4), and immune cell populations (macrophages, dendritic cells, and cytotoxic T cells). Responding tumors were marked by increased inflammation that were spatially distinct from hypoxic regions, providing a mechanistic understanding of the immune signaling pathways activated. To exploit image-guided combination therapy, hypoxia signal from PET imaging was used to guide the addition of a hypoxia targeted treatment to nonresponsive tumors, which ultimately provided therapeutic synergy and rescued response as determined by longitudinal changes in tumor volume. CONCLUSIONS: The results generated from this work provide an immediately translatable paradigm for measuring and targeting hypoxia to increase response to immune checkpoint therapy and using hypoxia imaging to guide combinatory therapies.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Programmed Cell Death 1 Receptor / Neoplasms Type of study: Prognostic_studies Limits: Humans Language: En Journal: Clin Cancer Res Journal subject: NEOPLASIAS Year: 2022 Document type: Article Country of publication: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Programmed Cell Death 1 Receptor / Neoplasms Type of study: Prognostic_studies Limits: Humans Language: En Journal: Clin Cancer Res Journal subject: NEOPLASIAS Year: 2022 Document type: Article Country of publication: Estados Unidos