Your browser doesn't support javascript.
loading
In vivo commensal control of Clostridioides difficile virulence.
Girinathan, Brintha P; DiBenedetto, Nicholas; Worley, Jay N; Peltier, Johann; Arrieta-Ortiz, Mario L; Immanuel, Selva Rupa Christinal; Lavin, Richard; Delaney, Mary L; Cummins, Christopher K; Hoffman, Maria; Luo, Yan; Gonzalez-Escalona, Narjol; Allard, Marc; Onderdonk, Andrew B; Gerber, Georg K; Sonenshein, Abraham L; Baliga, Nitin S; Dupuy, Bruno; Bry, Lynn.
Affiliation
  • Girinathan BP; Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • DiBenedetto N; Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Worley JN; Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; National Center of Biotechnology Information, National Library of Medicine, Bethesda, MD 20894, USA.
  • Peltier J; Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 25-28 Rue du Dr. Roux, Institut Pasteur, 75015 Paris Cedex, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif-sur-yvette Cedex, France.
  • Arrieta-Ortiz ML; Institute for Systems Biology, Seattle, WA 98109, USA.
  • Immanuel SRC; Institute for Systems Biology, Seattle, WA 98109, USA.
  • Lavin R; Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Delaney ML; Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Clinical Microbiology Laboratory, Department of Pathology, Brigham & Women's Hospital, Boston, MA 02115, USA.
  • Cummins CK; Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
  • Hoffman M; Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Microbiology, College Park, MD 20740, USA.
  • Luo Y; Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Microbiology, College Park, MD 20740, USA.
  • Gonzalez-Escalona N; Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Microbiology, College Park, MD 20740, USA.
  • Allard M; Center for Food Safety and Applied Nutrition, United States Food and Drug Administration, Department of Microbiology, College Park, MD 20740, USA.
  • Onderdonk AB; Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Clinical Microbiology Laboratory, Department of Pathology, Brigham & Women's Hospital, Boston, MA 02115, USA.
  • Gerber GK; Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Health Sciences & Technology, Cambridge, MA 02139, USA.
  • Sonenshein AL; Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA.
  • Baliga NS; Institute for Systems Biology, Seattle, WA 98109, USA.
  • Dupuy B; Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, 25-28 Rue du Dr. Roux, Institut Pasteur, 75015 Paris Cedex, France.
  • Bry L; Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Clinical Microbiology Laboratory, Department of Pathology, Brigham & Women's Hospital, Boston, MA 02115, USA. Electronic address: lbry@bwh.harvard.edu.
Cell Host Microbe ; 29(11): 1693-1708.e7, 2021 11 10.
Article in En | MEDLINE | ID: mdl-34637781
ABSTRACT
Leveraging systems biology approaches, we illustrate how metabolically distinct species of Clostridia protect against or worsen Clostridioides difficile infection in mice by modulating the pathogen's colonization, growth, and virulence to impact host survival. Gnotobiotic mice colonized with the amino acid fermenter Paraclostridium bifermentans survive infection with reduced disease severity, while mice colonized with the butyrate-producer, Clostridium sardiniense, succumb more rapidly. Systematic in vivo analyses revealed how each commensal alters the gut-nutrient environment to modulate the pathogen's metabolism, gene regulatory networks, and toxin production. Oral administration of P. bifermentans rescues conventional, clindamycin-treated mice from lethal C. difficile infection in a manner similar to that of monocolonized animals, thereby supporting the therapeutic potential of this commensal species. Our findings lay the foundation for mechanistically informed therapies to counter C. difficile disease using systems biology approaches to define host-commensal-pathogen interactions in vivo.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Symbiosis / Clostridioides difficile / Clostridium / Clostridium Infections / Clostridiales Limits: Animals Language: En Journal: Cell Host Microbe Journal subject: MICROBIOLOGIA Year: 2021 Document type: Article Affiliation country: Estados Unidos Publication country: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Symbiosis / Clostridioides difficile / Clostridium / Clostridium Infections / Clostridiales Limits: Animals Language: En Journal: Cell Host Microbe Journal subject: MICROBIOLOGIA Year: 2021 Document type: Article Affiliation country: Estados Unidos Publication country: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA