Your browser doesn't support javascript.
loading
Water-driven microbial nitrogen transformations in biological soil crusts causing atmospheric nitrous acid and nitric oxide emissions.
Maier, S; Kratz, A M; Weber, J; Prass, M; Liu, F; Clark, A T; Abed, R M M; Su, H; Cheng, Y; Eickhorst, T; Fiedler, S; Pöschl, U; Weber, B.
Affiliation
  • Maier S; Institute of Biology, University of Graz, Graz, Austria. stefanie.maier@uni-graz.at.
  • Kratz AM; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany. stefanie.maier@uni-graz.at.
  • Weber J; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
  • Prass M; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
  • Liu F; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
  • Clark AT; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
  • Abed RMM; School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
  • Su H; Institute of Biology, University of Graz, Graz, Austria.
  • Cheng Y; College of Science, Biology Department, Sultan Qaboos University, Al Khoud, Sultanate of Oman.
  • Eickhorst T; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
  • Fiedler S; Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany.
  • Pöschl U; FB2 (Biology/Chemistry), University of Bremen, Bremen, Germany.
  • Weber B; Institute of Geography, Johannes Gutenberg University, Mainz, Germany.
ISME J ; 16(4): 1012-1024, 2022 04.
Article in En | MEDLINE | ID: mdl-34764454
ABSTRACT
Biological soil crusts (biocrusts) release the reactive nitrogen gases (Nr) nitrous acid (HONO) and nitric oxide (NO) into the atmosphere, but the underlying microbial process controls have not yet been resolved. In this study, we analyzed the activity of microbial consortia relevant in Nr emissions during desiccation using transcriptome and proteome profiling and fluorescence in situ hybridization. We observed that < 30 min after wetting, genes encoding for all relevant nitrogen (N) cycling processes were expressed. The most abundant transcriptionally active N-transforming microorganisms in the investigated biocrusts were affiliated with Rhodobacteraceae, Enterobacteriaceae, and Pseudomonadaceae within the Alpha- and Gammaproteobacteria. Upon desiccation, the nitrite (NO2-) content of the biocrusts increased significantly, which was not the case when microbial activity was inhibited. Our results confirm that NO2- is the key precursor for biocrust emissions of HONO and NO. This NO2- accumulation likely involves two processes related to the transition from oxygen-limited to oxic conditions in the course of desiccation (i) a differential regulation of the expression of denitrification genes; and (ii) a physiological response of ammonia-oxidizing organisms to changing oxygen conditions. Thus, our findings suggest that the activity of N-cycling microorganisms determines the process rates and overall quantity of Nr emissions.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Soil / Nitrous Acid Language: En Journal: ISME J Journal subject: MICROBIOLOGIA / SAUDE AMBIENTAL Year: 2022 Document type: Article Affiliation country: Austria

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Soil / Nitrous Acid Language: En Journal: ISME J Journal subject: MICROBIOLOGIA / SAUDE AMBIENTAL Year: 2022 Document type: Article Affiliation country: Austria
...