A microRNA checkpoint for Ca2+ signaling and overload in acute pancreatitis.
Mol Ther
; 30(4): 1754-1774, 2022 04 06.
Article
in En
| MEDLINE
| ID: mdl-35077860
Acute pancreatitis (AP) is a common digestive disease without specific treatment, and its pathogenesis features multiple deleterious amplification loops dependent on translation, triggered by cytosolic Ca2+ ([Ca2+]i) overload; however, the underlying mechanisms in Ca2+ overload of AP remains incompletely understood. Here we show that microRNA-26a (miR-26a) inhibits pancreatic acinar cell (PAC) store-operated Ca2+ entry (SOCE) channel expression, Ca2+ overload, and AP. We find that major SOCE channels are post-transcriptionally induced in PACs during AP, whereas miR-26a expression is reduced in experimental and human AP and correlated with AP severity. Mechanistically, miR-26a simultaneously targets Trpc3 and Trpc6 SOCE channels and attenuates physiological oscillations and pathological elevations of [Ca2+]i in PACs. MiR-26a deficiency increases SOCE channel expression and [Ca2+]i overload, and significantly exacerbates AP. Conversely, global or PAC-specific overexpression of miR-26a in mice ameliorates pancreatic edema, neutrophil infiltration, acinar necrosis, and systemic inflammation, accompanied with remarkable improvements on pathological determinants related with [Ca2+]i overload. Moreover, pancreatic or systemic administration of an miR-26a mimic to mice significantly alleviates experimental AP. These findings reveal a previously unknown mechanism underlying AP pathogenesis, establish a critical role for miR-26a in Ca2+ signaling in the exocrine pancreas, and identify a potential target for the treatment of AP.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Pancreatitis
/
MicroRNAs
Type of study:
Prognostic_studies
Limits:
Animals
/
Humans
Language:
En
Journal:
Mol Ther
Journal subject:
BIOLOGIA MOLECULAR
/
TERAPEUTICA
Year:
2022
Document type:
Article
Affiliation country:
China
Country of publication:
Estados Unidos