DS-7300a, a DNA Topoisomerase I Inhibitor, DXd-Based Antibody-Drug Conjugate Targeting B7-H3, Exerts Potent Antitumor Activities in Preclinical Models.
Mol Cancer Ther
; 21(4): 635-646, 2022 04 01.
Article
in En
| MEDLINE
| ID: mdl-35149548
B7-H3 is overexpressed in various solid tumors and has been considered as an attractive target for cancer therapy. Here, we report the development of DS-7300a, a novel B7-H3-targeting antibody-drug conjugate with a potent DNA topoisomerase I inhibitor, and its in vitro profile, pharmacokinetic profiles, safety profiles, and in vivo antitumor activities in nonclinical species. The target specificity and species cross-reactivity of DS-7300a were assessed. Its pharmacologic activities were evaluated in several human cancer cell lines in vitro and xenograft mouse models, including patient-derived xenograft (PDX) mouse models in vivo. Pharmacokinetics was investigated in cynomolgus monkeys. Safety profiles in rats and cynomolgus monkeys were also assessed. DS-7300a specifically bound to B7-H3 and inhibited the growth of B7-H3-expressing cancer cells, but not that of B7-H3-negative cancer cells, in vitro. Additionally, treatment with DS-7300a and DXd induced phosphorylated checkpoint kinase 1, a DNA damage marker, and cleaved PARP, an apoptosis marker, in cancer cells. Moreover, DS-7300a demonstrated potent in vivo antitumor activities in high-B7-H3 tumor xenograft models, including various tumor types of high-B7-H3 PDX models. Furthermore, DS-7300a was stable in circulation with acceptable pharmacokinetic profiles in monkeys, and well tolerated in rats and monkeys. DS-7300a exerted potent antitumor activities against B7-H3-expressing tumors in in vitro and in vivo models, including PDX mouse models, and showed acceptable pharmacokinetic and safety profiles in nonclinical species. Therefore, DS-7300a may be effective in treating patients with B7-H3-expressing solid tumors in a clinical setting.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Immunoconjugates
/
Neoplasms
/
Antineoplastic Agents
Limits:
Animals
/
Humans
Language:
En
Journal:
Mol Cancer Ther
Journal subject:
ANTINEOPLASICOS
Year:
2022
Document type:
Article
Affiliation country:
Japón
Country of publication:
Estados Unidos