Adherence of Candida albicans and Malassezia Species to Skin Cells Induces Changes in the Expression of Genes Responsible for Heparan and Chondroitin Sulfate Chain Synthesis. / La unión de Candida albicans y Malassezia spp. a células de piel promueve cambios de expresión en los genes responsables de la síntesis de las cadenas de heparán y condroitín sulfato.
Actas Dermosifiliogr
; 113(7): 712-716, 2022.
Article
in En, Es
| MEDLINE
| ID: mdl-35331724
Superficial fungal infections are common in dermatology and are often caused by opportunistic species in the Candida and Malassezia genera. The aim of this study was to analyze changes in the expression of genes coding for enzymes involved in the biosynthesis of glycosaminoglycans (GAGs) chains following the adherence of Candida and Malassezia yeasts to skin cell lines. Gene expression was analyzed using reverse transcriptase-quantitative polymerase chain reaction assays. Interactions between the yeasts and the skin cells induced the following changes in genes involved in the biosynthesis of heparan sulfate and chondroitin sulfate: downregulation of CHPF in keratinocytes and downregulation of EXT1, EXT2, CHSY3, and CHPF in fibroblasts. Adherence to fibroblasts had an even greater effect on GAG biosynthetic enzymes, inducing the downregulation of 13 genes and the upregulation of two (CHST15 and CHST7). Interactions between yeasts and skin cells might affect the binding affinity of GAG chains, possibly changing their ability to function as receptors for pathogens and interfering with a key stage at the start of infection.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Chondroitin Sulfates
/
Malassezia
Limits:
Humans
Language:
En
/
Es
Journal:
Actas Dermosifiliogr
Year:
2022
Document type:
Article
Country of publication:
España