Your browser doesn't support javascript.
loading
Synthetic Biology Tools for Engineering Microbial Cells to Fight Superbugs.
León-Buitimea, Angel; Balderas-Cisneros, Francisco de Jesús; Garza-Cárdenas, César Rodolfo; Garza-Cervantes, Javier Alberto; Morones-Ramírez, José Rubén.
Affiliation
  • León-Buitimea A; Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico.
  • Balderas-Cisneros FJ; Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico.
  • Garza-Cárdenas CR; Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico.
  • Garza-Cervantes JA; Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Parque de Investigación e Innovación Tecnológica, Universidad Autónoma de Nuevo León, Apodaca, Mexico.
  • Morones-Ramírez JR; Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza, Mexico.
Front Bioeng Biotechnol ; 10: 869206, 2022.
Article in En | MEDLINE | ID: mdl-35600895
With the increase in clinical cases of bacterial infections with multiple antibiotic resistance, the world has entered a health crisis. Overuse, inappropriate prescribing, and lack of innovation of antibiotics have contributed to the surge of microorganisms that can overcome traditional antimicrobial treatments. In 2017, the World Health Organization published a list of pathogenic bacteria, including Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli (ESKAPE). These bacteria can adapt to multiple antibiotics and transfer their resistance to other organisms; therefore, studies to find new therapeutic strategies are needed. One of these strategies is synthetic biology geared toward developing new antimicrobial therapies. Synthetic biology is founded on a solid and well-established theoretical framework that provides tools for conceptualizing, designing, and constructing synthetic biological systems. Recent developments in synthetic biology provide tools for engineering synthetic control systems in microbial cells. Applying protein engineering, DNA synthesis, and in silico design allows building metabolic pathways and biological circuits to control cellular behavior. Thus, synthetic biology advances have permitted the construction of communication systems between microorganisms where exogenous molecules can control specific population behaviors, induce intracellular signaling, and establish co-dependent networks of microorganisms.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Front Bioeng Biotechnol Year: 2022 Document type: Article Affiliation country: México Country of publication: Suiza

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Front Bioeng Biotechnol Year: 2022 Document type: Article Affiliation country: México Country of publication: Suiza