Your browser doesn't support javascript.
loading
Inference of metabolic fluxes in nutrient-limited continuous cultures: A Maximum Entropy approach with the minimum information.
Pereiro-Morejón, José Antonio; Fernandez-de-Cossio-Diaz, Jorge; Mulet, Roberto.
Affiliation
  • Pereiro-Morejón JA; Group of Complex Systems and Statistical Physics, Physics Faculty, University of Havana, San Lazaro y L, Vedado, La Habana 10400, Cuba.
  • Fernandez-de-Cossio-Diaz J; Biology Faculty, University of Havana, San Lazaro y L, Vedado, La Habana 10400, Cuba.
  • Mulet R; Laboratory of Physics of the Ecole Normale Superieure, CNRS UMR 8023, PSL Research, 24 rue Lhomond, 75005 Paris, Ile de France, France.
iScience ; 25(12): 105450, 2022 Dec 22.
Article in En | MEDLINE | ID: mdl-36387025
ABSTRACT
The study of cellular metabolism is limited by the amount of experimental data available. Formulations able to extract relevant predictions from accessible measurements are needed. Maximum Entropy (ME) inference has been successfully applied to genome-scale models of cellular metabolism, and recent data-driven studies have suggested that in chemostat cultures of Escherichia coli (E. coli), the growth rate and uptake rates of limiting nutrients are the most informative observables. We propose the thesis that this can be explained by the chemostat dynamics, which typically drives nutrient-limited cultures toward observable metabolic states maximally restricted in the dimensions of those fluxes. A practical consequence is that relevant flux observables can now be replaced by culture parameters usually controlled. We test our model by using simulations, and then we apply it to E. coli experimental data where we evaluate the quality of the inference, comparing it to alternative formulations that rest on convex optimization.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: IScience Year: 2022 Document type: Article Affiliation country: Cuba

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: IScience Year: 2022 Document type: Article Affiliation country: Cuba