Your browser doesn't support javascript.
loading
Conformational sampling of CMT-2D associated GlyRS mutations.
Childers, Matthew Carter; Regnier, Michael; Bothwell, Mark; Smith, Alec S T.
Affiliation
  • Childers MC; Department of Bioengineering, University of Washington, Seattle, WA, United States.
  • Regnier M; The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.
  • Bothwell M; Department of Bioengineering, University of Washington, Seattle, WA, United States.
  • Smith AST; The Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, United States.
Article in En | MEDLINE | ID: mdl-36504507
During protein synthesis, aminoacyl-tRNA synthetases covalently link amino acids with their cognate tRNAs. Amino acid mutations in glycyl-tRNA synthetase can disrupt protein synthesis and lead to a neurological disorder known as Charcot-Marie-Tooth disease type 2D (CMT-2D). Several studies employing diverse techniques have identified potential disease mechanisms at the molecular level. The majority of CMT-2D mutations in glycyl-tRNA are found within its dimer interface. However, no atomic structures bearing these mutations have been solved. Consequently, the specific disease-causing structural changes that occur in glycyl-tRNA synthetase have not been definitively established. Here we use molecular dynamics simulations to probe conformational changes in glycyl-tRNA synthetase caused by one mutation within the dimer interface: G240R. Our results show that the mutation alters the number of native interactions at the dimer interface and also leads to altered dynamics of two regions of glycyl-tRNA synthetase associated with tRNA binding. Additionally, we use our simulations to make predictions about the effects of other clinically reported CMT-2D mutations. Our results identify a region of the glycyl-tRNA synthetase structure that may be disrupted in a large number of CMT-2D mutations. Structural changes in this region may be a common molecular mechanism in glycyl-tRNA synthetase CMT-2D pathologies. Statement of significance: In this study, we use molecular dynamics simulations to elucidate structural conformations accessible to glycyl-tRNA synthetase (GlyRS), an enzyme that ligates cytosolic glycine with tRNA-Gly. This protein contains multiple flexible regions with dynamics that elude in vitro structural characterization. Our computational approach provides unparalleled atomistic details of structural changes in GlyRS that contribute to its role in protein synthesis. A number of mutations in GlyRS are associated with a peripheral nerve disorder, Charcot-Marie-Tooth disease type 2D (CMT-2D). Mutation-induced structural and dynamic changes in GlyRS have similarity that elude in vitro structural characterization. Our simulations provide insights into disease mechanisms for one such mutation: G240R. Additionally, we leverage our computational data to identify regions of GlyRS critical to its function and to predict the effects of other disease-associated mutations. These results open up new directions for research into the molecular characterization of GlyRS and into hypothesis-driven studies of CMT-2D disease mechanisms.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Risk_factors_studies Language: En Journal: Brain Multiphys Year: 2022 Document type: Article Affiliation country: Estados Unidos Country of publication: Reino Unido

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Risk_factors_studies Language: En Journal: Brain Multiphys Year: 2022 Document type: Article Affiliation country: Estados Unidos Country of publication: Reino Unido