Your browser doesn't support javascript.
loading
On sparse ensemble methods: An application to short-term predictions of the evolution of COVID-19.
Benítez-Peña, Sandra; Carrizosa, Emilio; Guerrero, Vanesa; Jiménez-Gamero, M Dolores; Martín-Barragán, Belén; Molero-Río, Cristina; Ramírez-Cobo, Pepa; Romero Morales, Dolores; Sillero-Denamiel, M Remedios.
Affiliation
  • Benítez-Peña S; Instituto de Matemáticas de la Universidad de Sevilla, Seville, Spain.
  • Carrizosa E; Departamento de Estadística e Investigación Operativa, Universidad de Sevilla, Seville, Spain.
  • Guerrero V; Instituto de Matemáticas de la Universidad de Sevilla, Seville, Spain.
  • Jiménez-Gamero MD; Departamento de Estadística e Investigación Operativa, Universidad de Sevilla, Seville, Spain.
  • Martín-Barragán B; Departamento de Estadística, Universidad Carlos III de Madrid, Getafe, Spain.
  • Molero-Río C; Instituto de Matemáticas de la Universidad de Sevilla, Seville, Spain.
  • Ramírez-Cobo P; Departamento de Estadística e Investigación Operativa, Universidad de Sevilla, Seville, Spain.
  • Romero Morales D; The University of Edinburgh Business School, University of Edinburgh, Edinburgh, UK.
  • Sillero-Denamiel MR; Instituto de Matemáticas de la Universidad de Sevilla, Seville, Spain.
Eur J Oper Res ; 295(2): 648-663, 2021 Dec 01.
Article in En | MEDLINE | ID: mdl-36569384
Since the seminal paper by Bates and Granger in 1969, a vast number of ensemble methods that combine different base regressors to generate a unique one have been proposed in the literature. The so-obtained regressor method may have better accuracy than its components, but at the same time it may overfit, it may be distorted by base regressors with low accuracy, and it may be too complex to understand and explain. This paper proposes and studies a novel Mathematical Optimization model to build a sparse ensemble, which trades off the accuracy of the ensemble and the number of base regressors used. The latter is controlled by means of a regularization term that penalizes regressors with a poor individual performance. Our approach is flexible to incorporate desirable properties one may have on the ensemble, such as controlling the performance of the ensemble in critical groups of records, or the costs associated with the base regressors involved in the ensemble. We illustrate our approach with real data sets arising in the COVID-19 context.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies / Risk_factors_studies Language: En Journal: Eur J Oper Res Year: 2021 Document type: Article Affiliation country: España Country of publication: Países Bajos

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies / Risk_factors_studies Language: En Journal: Eur J Oper Res Year: 2021 Document type: Article Affiliation country: España Country of publication: Países Bajos