Your browser doesn't support javascript.
loading
Engineered liposomes to deliver nucleic acid mimics in Escherichia coli.
Moreira, Luís; Guimarães, Nuno M; Pereira, Sara; Santos, Rita S; Loureiro, Joana A; Ferreira, Rui M; Figueiredo, Céu; Pereira, Maria C; Azevedo, Nuno F.
Affiliation
  • Moreira L; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias,
  • Guimarães NM; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias,
  • Pereira S; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias,
  • Santos RS; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias,
  • Loureiro JA; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias,
  • Ferreira RM; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.
  • Figueiredo C; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Ipatimup - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal; Faculty of Medicine, University of Porto, Porto, Portugal.
  • Pereira MC; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias,
  • Azevedo NF; LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias,
J Control Release ; 355: 489-500, 2023 03.
Article in En | MEDLINE | ID: mdl-36775246
Antisense oligonucleotides (ASOs) composed of nucleic acid mimics (NAMs) monomers are considered as potential novel therapeutic drugs against bacterial infections. However, bacterial envelopes are generally impermeable to naked oligonucleotides. Herein, liposomes loaded with NAMs-modified oligonucleotides (LipoNAMs) were evaluated to deliver ASOs in Escherichia coli. Specifically, we tested several surface modifications that included methoxyPEG conjugated to different lipid anchors or modification of the PEG distal ends with maleimide groups and antibodies. MethoxyPEG coated LipoNAMs showed low delivery efficiency for most bacteria, but maleimide-functionalized PEG LipoNAMs were able to deliver ASOs to nearly half of the bacterial population. Conjugation of antibodies to maleimide-functionalized PEG LipoNAMs increased 1.3-fold the delivery efficiency, enhancing the selectivity towards E. coli and biocompatibility. This work demonstrated for the first time that the coupling of antibodies to PEGylated liposomes can significantly improve the delivery of ASOs in E. coli, which might bring alternative routes for the treatment of bacterial infections in the future.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Nucleic Acids / Liposomes Language: En Journal: J Control Release Journal subject: FARMACOLOGIA Year: 2023 Document type: Article Country of publication: Países Bajos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Nucleic Acids / Liposomes Language: En Journal: J Control Release Journal subject: FARMACOLOGIA Year: 2023 Document type: Article Country of publication: Países Bajos