Your browser doesn't support javascript.
loading
Control of tissue oxygenation by S-nitrosohemoglobin in human subjects.
Reynolds, James D; Posina, Kanna; Zhu, Lin; Jenkins, Trevor; Matto, Faisal; Hausladen, Alfred; Kashyap, Vikram; Schilz, Robert; Zhang, Rongli; Mannick, Joan; Klickstein, Lloyd; Premont, Richard T; Stamler, Jonathan S.
Affiliation
  • Reynolds JD; Department of Anesthesiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106.
  • Posina K; The Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106.
  • Zhu L; The Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106.
  • Jenkins T; Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106.
  • Matto F; Department of Anesthesiology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106.
  • Hausladen A; The Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106.
  • Kashyap V; The Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106.
  • Schilz R; Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106.
  • Zhang R; The Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106.
  • Mannick J; Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106.
  • Klickstein L; The Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106.
  • Premont RT; Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106.
  • Stamler JS; Department of Surgery, School of Medicine, Case Western Reserve University, Cleveland, OH 44106.
Proc Natl Acad Sci U S A ; 120(9): e2220769120, 2023 02 28.
Article in En | MEDLINE | ID: mdl-36812211
ABSTRACT
S-Nitrosohemoglobin (SNO-Hb) is unique among vasodilators in coupling blood flow to tissue oxygen requirements, thus fulfilling an essential function of the microcirculation. However, this essential physiology has not been tested clinically. Reactive hyperemia following limb ischemia/occlusion is a standard clinical test of microcirculatory function, which has been ascribed to endothelial nitric oxide (NO). However, endothelial NO does not control blood flow governing tissue oxygenation, presenting a major quandary. Here we show in mice and humans that reactive hyperemic responses (i.e., reoxygenation rates following brief ischemia/occlusion) are in fact dependent on SNO-Hb. First, mice deficient in SNO-Hb (i.e., carrying C93A mutant Hb refractory to S-nitrosylation) showed blunted muscle reoxygenation rates and persistent limb ischemia during reactive hyperemia testing. Second, in a diverse group of humans-including healthy subjects and patients with various microcirculatory disorders-strong correlations were found between limb reoxygenation rates following occlusion and both arterial SNO-Hb levels (n = 25; P = 0.042) and SNO-Hb/total HbNO ratios (n = 25; P = 0.009). Secondary analyses showed that patients with peripheral artery disease had significantly reduced SNO-Hb levels and blunted limb reoxygenation rates compared with healthy controls (n = 8 to 11/group; P < 0.05). Low SNO-Hb levels were also observed in sickle cell disease, where occlusive hyperemic testing was deemed contraindicated. Altogether, our findings provide both genetic and clinical support for the role of red blood cells in a standard test of microvascular function. Our results also suggest that SNO-Hb is a biomarker and mediator of blood flow governing tissue oxygenation. Thus, increases in SNO-Hb may improve tissue oxygenation in patients with microcirculatory disorders.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Hyperemia Limits: Animals / Humans Language: En Journal: Proc Natl Acad Sci U S A Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Hyperemia Limits: Animals / Humans Language: En Journal: Proc Natl Acad Sci U S A Year: 2023 Document type: Article
...