Your browser doesn't support javascript.
loading
D-Serine reduces the expression of the cytopathic genotoxin colibactin.
Hallam, Jennifer C; Sandalli, Sofia; Floria, Iris; Turner, Natasha C A; Tang-Fichaux, Min; Oswald, Eric; O'Boyle, Nicky; Roe, Andrew J.
Affiliation
  • Hallam JC; School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.
  • Sandalli S; School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.
  • Floria I; School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.
  • Turner NCA; School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.
  • Tang-Fichaux M; IRSD, INSERM, INRAE, Université de Toulouse, ENVT, Toulouse, France.
  • Oswald E; IRSD, INSERM, INRAE, Université de Toulouse, ENVT, Toulouse, France.
  • O'Boyle N; CHU Toulouse, Hôpital Purpan, Service de Bactériologie-Hygiène, Toulouse, France.
  • Roe AJ; School of Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.
Microb Cell ; 10(3): 63-77, 2023 Mar 06.
Article in En | MEDLINE | ID: mdl-36908282
Some Escherichia coli strains harbour the pks island, a 54 kb genomic island encoding the biosynthesis genes for a genotoxic compound named colibactin. In eukaryotic cells, colibactin can induce DNA damage, cell cycle arrest and chromosomal instability. Production of colibactin has been implicated in the development of colorectal cancer (CRC). In this study, we demonstrate the inhibitory effect of D-Serine on the expression of the pks island in both prototypic and clinically-associated colibactin-producing strains and determine the implications for cytopathic effects on host cells. We also tested a comprehensive panel of proteinogenic L-amino acids and corresponding D-enantiomers for their ability to modulate clbB transcription. Whilst several D-amino acids exhibited the ability to inhibit expression of clbB, D-Serine exerted the strongest repressing activity (>3.8-fold) and thus, we focussed additional experiments on D-Serine. To investigate the cellular effect, we investigated if repression of colibactin by D-Serine could reduce the cytopathic responses normally observed during infection of HeLa cells with pks + strains. Levels of γ-H2AX (a marker of DNA double strand breaks) were reduced 2.75-fold in cells infected with D-Serine treatment. Moreover, exposure of pks + E. coli to D-Serine during infection caused a reduction in cellular senescence that was observable at 72 h post infection. The recent finding of an association between pks-carrying commensal E. coli and CRC, highlights the necessity for the development of colibactin targeting therapeutics. Here we show that D-Serine can reduce expression of colibactin, and inhibit downstream cellular cytopathy, illuminating its potential to prevent colibactin-associated disease.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Microb Cell Year: 2023 Document type: Article Affiliation country: Reino Unido Country of publication: Austria

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Microb Cell Year: 2023 Document type: Article Affiliation country: Reino Unido Country of publication: Austria