Your browser doesn't support javascript.
loading
Reverse Phase Protein Array Profiling Identifies Recurrent Protein Expression Patterns of DNA Damage-Related Proteins across Acute and Chronic Leukemia: Samples from Adults and the Children's Oncology Group.
Hoff, Fieke W; Griffen, Ti'ara L; Brown, Brandon D; Horton, Terzah M; Burger, Jan; Wierda, William; Hubner, Stefan E; Qiu, Yihua; Kornblau, Steven M.
Affiliation
  • Hoff FW; Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390-9030, USA.
  • Griffen TL; Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30310-1458, USA.
  • Brown BD; Division of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030-4009, USA.
  • Horton TM; Department of Pediatrics, Texas Children's Cancer Center, Baylor College of Medicine, Houston, TX 77030-3498, USA.
  • Burger J; Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030-4009, USA.
  • Wierda W; Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030-4009, USA.
  • Hubner SE; Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030-4009, USA.
  • Qiu Y; Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030-4009, USA.
  • Kornblau SM; Department of Leukemia, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030-4009, USA.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in En | MEDLINE | ID: mdl-36982537
ABSTRACT
DNA damage response (DNADR) recognition and repair (DDR) pathways affect carcinogenesis and therapy responsiveness in cancers, including leukemia. We measured protein expression levels of 16 DNADR and DDR proteins using the Reverse Phase Protein Array methodology in acute myeloid (AML) (n = 1310), T-cell acute lymphoblastic leukemia (T-ALL) (n = 361) and chronic lymphocytic leukemia (CLL) (n = 795) cases. Clustering analysis identified five protein expression clusters; three were unique compared to normal CD34+ cells. Individual protein expression differed by disease for 14/16 proteins, with five highest in CLL and nine in T-ALL, and by age in T-ALL and AML (six and eleven proteins, respectively), but not CLL (n = 0). Most (96%) of the CLL cases clustered in one cluster; the other 4% were characterized by higher frequencies of deletion 13q and 17p, and fared poorly (p < 0.001). T-ALL predominated in C1 and AML in C5, but both occurred in all four acute-dominated clusters. Protein clusters showed similar implications for survival and remission duration in pediatric and adult T-ALL and AML populations, with C5 doing best in all. In summary, DNADR and DDR protein expression was abnormal in leukemia and formed recurrent clusters that were shared across the leukemias with shared prognostic implications across diseases, and individual proteins showed age- and disease-related differences.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Leukemia, Lymphocytic, Chronic, B-Cell / Leukemia, Myeloid, Acute / Precursor T-Cell Lymphoblastic Leukemia-Lymphoma Limits: Adult / Child / Humans Language: En Journal: Int J Mol Sci Year: 2023 Document type: Article Affiliation country: Estados Unidos

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Leukemia, Lymphocytic, Chronic, B-Cell / Leukemia, Myeloid, Acute / Precursor T-Cell Lymphoblastic Leukemia-Lymphoma Limits: Adult / Child / Humans Language: En Journal: Int J Mol Sci Year: 2023 Document type: Article Affiliation country: Estados Unidos