Your browser doesn't support javascript.
loading
Ultra-Small High-Entropy Alloy Nanoparticles: Efficient Nanozyme for Enhancing Tumor Photothermal Therapy.
Ai, Yongjian; He, Meng-Qi; Sun, Hua; Jia, Xiaomeng; Wu, Lei; Zhang, Xinyue; Sun, Hong-Bin; Liang, Qionglin.
Affiliation
  • Ai Y; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084,
  • He MQ; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084,
  • Sun H; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084,
  • Jia X; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084,
  • Wu L; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084,
  • Zhang X; Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, P. R. China.
  • Sun HB; Department of Chemistry, College of Science, Northeastern University, Shenyang, 110819, P. R. China.
  • Liang Q; MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084,
Adv Mater ; 35(23): e2302335, 2023 Jun.
Article in En | MEDLINE | ID: mdl-36995655
ABSTRACT
High-entropy alloys nanoparticles (HEANPs) are receiving extensive attention due to their broad compositional tunability and unlimited potential in bioapplication. However, developing new methods to prepare ultra-small high-entropy alloy nanoparticles (US-HEANPs) faces severe challenges owing to their intrinsic thermodynamic instability. Furthermore, there are few reports on studying the effect of HEANPs in tumor therapy. Herein, the fabricated PtPdRuRhIr US-HEANPs act as bifunctional nanoplatforms for the highly efficient treatment of tumors. The US-HEANPs are engineered by the universal metal-ligand cross-linking strategy. This simple and scalable strategy is based on the aldol condensation of organometallics to form the target US-HEANPs. The synthesized US-HEANPs exhibit excellent peroxidase-like (POD-like) activity and can catalyze the endogenous hydrogen peroxide to produce highly toxic hydroxyl radicals. Furthermore, the US-HEANPs possess a high photothermal conversion effect for converting 808 nm near-infrared light into heat energy. In vivo and in vitro experiments demonstrated that under the synergistic effect of POD-like activity and photothermal action, the US-HEANPs can effectively ablate cancer cells and treat tumors. It is believed that this work not only provides a new perspective for the fabrication of HEANPs, but also opens the high-entropy nanozymes research direction and their biomedical application.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Nanoparticles / Neoplasms Limits: Humans Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Nanoparticles / Neoplasms Limits: Humans Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2023 Document type: Article