Your browser doesn't support javascript.
loading
Aligned lovastatin-loaded electrospun nanofibers regulate collagen organization and reduce scar formation.
Chen, Zuhan; Xiao, Lingfei; Hu, Chaoyu; Shen, Zixia; Zhou, Encheng; Zhang, Shichen; Wang, Yanfeng.
Affiliation
  • Chen Z; Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China; Department of Kidney Transplantation, Nephropathy Hospital, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
  • Xiao L; Department of Spine Surgery and Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China.
  • Hu C; Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China.
  • Shen Z; Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China.
  • Zhou E; Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China.
  • Zhang S; Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China.
  • Wang Y; Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Wuhan, 430072, China. Electronic address: yanfengwang@whu.edu.cn.
Acta Biomater ; 164: 240-252, 2023 07 01.
Article in En | MEDLINE | ID: mdl-37075962
ABSTRACT
Excessive scar formation caused by cutaneous injury leads to pruritus, pain, contracture, dyskinesia, and unpleasant appearance. Functional wound dressings are designed to accelerate wound healing and reduce scar formation. In this study, we fabricated aligned or random polycaprolactone/silk fibroin electrospun nanofiber membranes with or without lovastatin loading, and then evaluated their scar-inhibitory effects on wounds under a specific tension direction. The nanofiber membranes exhibited good controlled-release performance, mechanical properties, hydrophilicity, and biocompatibility. Furthermore, nanofibers' perpendicular placement to the tension direction of the wound most effectively reduced scar formation (the scar area decreased by 66.9%) and promoted skin regeneration in vivo. The mechanism was associated with aligned nanofibers regulated collagen organization in the early stage of wound healing. Moreover, lovastatin-loaded nanofibers inhibited myofibroblast differentiation and migration. Both tension direction-perpendicular topographical cues and lovastatin synergistically inhibited mechanical transduction and fibrosis progression, further reducing scar formation. In summary, our study may provide an effective scar prevention strategy in which individualized dressings can be designed according to the local mechanical force direction of patients' wounds, and the addition of lovastatin can further inhibit scar formation. STATEMENT OF

SIGNIFICANCE:

In vivo, cells and collagen are always arranged parallel to the tension direction. However, the aligned topographic cues themselves promote myofibroblast differentiation and exacerbate scar formation. Electrospun nanofibers' perpendicular placement to the tension direction of the wound most effectively reduces scar formation and promotes skin regeneration in vivo. The mechanism is associated with tension direction-perpendicular nanofibers reregulate collagen organization in the early stage of wound healing. In addition, tension direction-perpendicular topographical cue and lovastatin could inhibit mechanical transduction and fibrosis progression synergistically, further reducing scar formation. This study proves that combining topographical cues of wound dressing and drugs would be a promising therapy for clinical scar management.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cicatrix / Nanofibers Limits: Humans Language: En Journal: Acta Biomater Year: 2023 Document type: Article Affiliation country: China Country of publication: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cicatrix / Nanofibers Limits: Humans Language: En Journal: Acta Biomater Year: 2023 Document type: Article Affiliation country: China Country of publication: ENGLAND / ESCOCIA / GB / GREAT BRITAIN / INGLATERRA / REINO UNIDO / SCOTLAND / UK / UNITED KINGDOM