Your browser doesn't support javascript.
loading
Novel Approaches to Characterize Individual Drug Metabolism and Advance Precision Medicine.
Jackson, Klarissa D; Achour, Brahim; Lee, Jonghwa; Geffert, Raeanne M; Beers, Jessica L; Latham, Bethany D.
Affiliation
  • Jackson KD; Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rh
  • Achour B; Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rh
  • Lee J; Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rh
  • Geffert RM; Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rh
  • Beers JL; Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rh
  • Latham BD; Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.D.J., J.L., R.M.G., J.L.B., B.D.L.); and Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rh
Drug Metab Dispos ; 51(10): 1238-1253, 2023 10.
Article in En | MEDLINE | ID: mdl-37419681
ABSTRACT
Interindividual variability in drug metabolism can significantly affect drug concentrations in the body and subsequent drug response. Understanding an individual's drug metabolism capacity is important for predicting drug exposure and developing precision medicine strategies. The goal of precision medicine is to individualize drug treatment for patients to maximize efficacy and minimize drug toxicity. While advances in pharmacogenomics have improved our understanding of how genetic variations in drug-metabolizing enzymes (DMEs) affect drug response, nongenetic factors are also known to influence drug metabolism phenotypes. This minireview discusses approaches beyond pharmacogenetic testing to phenotype DMEs-particularly the cytochrome P450 enzymes-in clinical settings. Several phenotyping approaches have been proposed traditional approaches include phenotyping with exogenous probe substrates and the use of endogenous biomarkers; newer approaches include evaluating circulating noncoding RNAs and liquid biopsy-derived markers relevant to DME expression and function. The goals of this minireview are to 1) provide a high-level overview of traditional and novel approaches to phenotype individual drug metabolism capacity, 2) describe how these approaches are being applied or can be applied to pharmacokinetic studies, and 3) discuss perspectives on future opportunities to advance precision medicine in diverse populations. SIGNIFICANCE STATEMENT This minireview provides an overview of recent advances in approaches to characterize individual drug metabolism phenotypes in clinical settings. It highlights the integration of existing pharmacokinetic biomarkers with novel approaches; also discussed are current challenges and existing knowledge gaps. The article concludes with perspectives on the future deployment of a liquid biopsy-informed physiologically based pharmacokinetic strategy for patient characterization and precision dosing.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cytochrome P-450 Enzyme System / Precision Medicine Type of study: Prognostic_studies Limits: Humans Language: En Journal: Drug Metab Dispos Journal subject: FARMACOLOGIA Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Cytochrome P-450 Enzyme System / Precision Medicine Type of study: Prognostic_studies Limits: Humans Language: En Journal: Drug Metab Dispos Journal subject: FARMACOLOGIA Year: 2023 Document type: Article