Your browser doesn't support javascript.
loading
Curvature Effect of Pyridinic N-Modified Carbon Atom Sites for Electrocatalyzing CO2 Conversion to CO.
Zhao, Yuying; Yuan, Qixin; Sun, Kang; Wang, Ao; Xu, Ruting; Xu, Jing; Wang, Yan; Fan, Mengmeng; Jiang, Jianchun.
Affiliation
  • Zhao Y; Key Lab of Biomass Energy and Material; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, China.
  • Yuan Q; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
  • Sun K; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
  • Wang A; Key Lab of Biomass Energy and Material; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, China.
  • Xu R; Key Lab of Biomass Energy and Material; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, China.
  • Xu J; Key Lab of Biomass Energy and Material; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, China.
  • Wang Y; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
  • Fan M; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
  • Jiang J; Key Lab of Biomass Energy and Material; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, Jiangsu, China.
ACS Appl Mater Interfaces ; 15(31): 37593-37601, 2023 Aug 09.
Article in En | MEDLINE | ID: mdl-37494594
ABSTRACT
Carbon material is considered a promising electrocatalyst for the CO2 reduction reaction (CO2RR); especially, N-doped carbon material shows high CO Faradic efficiency (FECO) when using pyridinic N species as the active site. However, in the past decade, more efforts were focused on the preparation of various carbon nanostructures containing abundant pyridinic N species and few researchers studied the electronic structure modulation of the pyridinic N site. The curvature of the carbon substrate is an easily controllable parameter for modulating the local electronic environment of catalytic sites. In this research, carbon nanotubes (CNTs) with different diameters are applied to modulate the electronic environment of pyridinic N by the curvature effect. The pyridinic N sites doped on CNTs with the average curvature of 0.04 show almost 100% FECO at the current density of 3 mA cm-2 at -0.6 V vs RHE and 91% FECO retention after 12 h test, which is superior to most of the carbon-based electrocatalysts. As demonstrated by density functional theory simulation, the pyridinic N site forms a strong local electric field around the nearby C active site and protrudes out of the curved CNT surface like a tip, which remarkably enriches the protons around the adsorbed CO2 molecule.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2023 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2023 Document type: Article Affiliation country: China