Your browser doesn't support javascript.
loading
The completed genome sequence of Pestalotiopsis versicolor, a pathogenic ascomycete fungus with implications for bayberry production.
Guo, Junning; Ren, Haiying; Ijaz, Munazza; Qi, Xingjiang; Ahmed, Temoor; You, Yuxin; Li, Gang; Yu, Zheping; Islam, Mohammad Shafiqul; Ali, Hayssam M; Sun, Li; Li, Bin.
Affiliation
  • Guo J; State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; State K
  • Ren H; State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China. Electronic address: renhy@zaas.ac.cn.
  • Ijaz M; State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
  • Qi X; State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; Xianghu Laboratory, Hangzhou 311231, China.
  • Ahmed T; State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; Xianghu
  • You Y; State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
  • Li G; State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
  • Yu Z; State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
  • Islam MS; State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
  • Ali HM; Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
  • Sun L; State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
  • Li B; State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China. Electro
Genomics ; 115(5): 110695, 2023 09.
Article in En | MEDLINE | ID: mdl-37558012
ABSTRACT
The pathogenic fungus Pestalotiopsis versicolor is a major etiological agent of fungal twig blight disease affecting bayberry trees. However, the lack of complete genome sequence information for this crucial pathogenic fungus hinders the molecular and genetic investigation of its pathogenic mechanism. To address this knowledge gap, we have generated the complete genome sequence of P. versicolor strain XJ27, employing a combination of Illumina, PacBio, and Hi-C sequencing technologies. This comprehensive genome sequence, comprising 7 chromosomes with an N50 contig size of 7,275,017 bp, a GC content ratio of 50.16%, and a total size of 50.80 Mb, encompasses 13,971 predicted coding genes. By performing comparative genomic analysis between P. versicolor and the genomes of eleven plant-pathogenic fungi, as well as three closely related fungi within the same group, we have gained initial insights into its evolutionary trajectory, particularly through gene family analysis. These findings shed light on the distinctive characteristics and evolutionary history of P. versicolor. Importantly, the availability of this high-quality genetic resource will serve as a foundational tool for investigating the biology, molecular pathogenesis, and virulence of P. versicolor. Furthermore, it will facilitate the development of more potent antifungal medications by uncovering potential vulnerabilities in its genetic makeup.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ascomycota / Myrica Type of study: Prognostic_studies Language: En Journal: Genomics Journal subject: GENETICA Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ascomycota / Myrica Type of study: Prognostic_studies Language: En Journal: Genomics Journal subject: GENETICA Year: 2023 Document type: Article