Your browser doesn't support javascript.
loading
HCS-Splice: A High-Content Screening Method to Advance the Discovery of RNA Splicing-Modulating Therapeutics.
Covello, Giuseppina; Siva, Kavitha; Adami, Valentina; Denti, Michela Alessandra.
Affiliation
  • Covello G; RNA Biology and Biotechnology Laboratory, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy.
  • Siva K; RNA Biology and Biotechnology Laboratory, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy.
  • Adami V; High Throughput Screening and Validation Core Facility (HTS), Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy.
  • Denti MA; RNA Biology and Biotechnology Laboratory, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, 38123 Trento, Italy.
Cells ; 12(15)2023 07 28.
Article in En | MEDLINE | ID: mdl-37566038
Nucleic acid therapeutics have demonstrated an impressive acceleration in recent years. They work through multiple mechanisms of action, including the downregulation of gene expression and the modulation of RNA splicing. While several drugs based on the former mechanism have been approved, few target the latter, despite the promise of RNA splicing modulation. To improve our ability to discover novel RNA splicing-modulating therapies, we developed HCS-Splice, a robust cell-based High-Content Screening (HCS) assay. By implementing the use of a two-colour (GFP/RFP) fluorescent splicing reporter plasmid, we developed a versatile, effective, rapid, and robust high-throughput strategy for the identification of potent splicing-modulating molecules. The HCS-Splice strategy can also be used to functionally confirm splicing mutations in human genetic disorders or to screen drug candidates. As a proof-of-concept, we introduced a dementia-related splice-switching mutation in the Microtubule-Associated Protein Tau (MAPT) exon 10 splicing reporter. We applied HCS-Splice to the wild-type and mutant reporters and measured the functional change in exon 10 inclusion. To demonstrate the applicability of the method in cell-based drug discovery, HCS-Splice was used to evaluate the efficacy of an exon 10-targeting siRNA, which was able to restore the correct alternative splicing balance.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: RNA Splicing / Alternative Splicing Type of study: Diagnostic_studies / Screening_studies Limits: Humans Language: En Journal: Cells Year: 2023 Document type: Article Affiliation country: Italia Country of publication: Suiza

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: RNA Splicing / Alternative Splicing Type of study: Diagnostic_studies / Screening_studies Limits: Humans Language: En Journal: Cells Year: 2023 Document type: Article Affiliation country: Italia Country of publication: Suiza