Your browser doesn't support javascript.
loading
Simultaneous inhibition of DNA-PK and PolÏ´ improves integration efficiency and precision of genome editing.
Wimberger, Sandra; Akrap, Nina; Firth, Mike; Brengdahl, Johan; Engberg, Susanna; Schwinn, Marie K; Slater, Michael R; Lundin, Anders; Hsieh, Pei-Pei; Li, Songyuan; Cerboni, Silvia; Sumner, Jonathan; Bestas, Burcu; Schiffthaler, Bastian; Magnusson, Björn; Di Castro, Silvio; Iyer, Preeti; Bohlooly-Y, Mohammad; Machleidt, Thomas; Rees, Steve; Engkvist, Ola; Norris, Tyrell; Cadogan, Elaine B; Forment, Josep V; Svikovic, Sasa; Akcakaya, Pinar; Taheri-Ghahfarokhi, Amir; Maresca, Marcello.
Affiliation
  • Wimberger S; Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden. sandra.wimberger@astrazeneca.com.
  • Akrap N; Department of Chemistry & Molecular Biology, University of Gothenburg, Gothenburg, Sweden. sandra.wimberger@astrazeneca.com.
  • Firth M; Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Brengdahl J; Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
  • Engberg S; Cell Assay Development, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Schwinn MK; Cell Engineering Sweden, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Slater MR; Promega Corporation, Madison, WI, USA.
  • Lundin A; Promega Corporation, Madison, WI, USA.
  • Hsieh PP; Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Li S; Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Cerboni S; Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Sumner J; Translational Science & Experimental Medicine, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Bestas B; Cell Immunology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
  • Schiffthaler B; Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Magnusson B; Data Sciences & Quantitative Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Di Castro S; Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Iyer P; Compound Synthesis & Management, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Bohlooly-Y M; Molecular AI, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Machleidt T; Translational Genomics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Rees S; Promega Corporation, Madison, WI, USA.
  • Engkvist O; Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
  • Norris T; Molecular AI, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Cadogan EB; Cell Engineering Sweden, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Forment JV; Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
  • Svikovic S; Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
  • Akcakaya P; Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Taheri-Ghahfarokhi A; Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
  • Maresca M; Genome Engineering, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
Nat Commun ; 14(1): 4761, 2023 08 14.
Article in En | MEDLINE | ID: mdl-37580318
ABSTRACT
Genome editing, specifically CRISPR/Cas9 technology, has revolutionized biomedical research and offers potential cures for genetic diseases. Despite rapid progress, low efficiency of targeted DNA integration and generation of unintended mutations represent major limitations for genome editing applications caused by the interplay with DNA double-strand break repair pathways. To address this, we conduct a large-scale compound library screen to identify targets for enhancing targeted genome insertions. Our study reveals DNA-dependent protein kinase (DNA-PK) as the most effective target to improve CRISPR/Cas9-mediated insertions, confirming previous findings. We extensively characterize AZD7648, a selective DNA-PK inhibitor, and find it to significantly enhance precise gene editing. We further improve integration efficiency and precision by inhibiting DNA polymerase theta (PolÏ´). The combined treatment, named 2iHDR, boosts templated insertions to 80% efficiency with minimal unintended insertions and deletions. Notably, 2iHDR also reduces off-target effects of Cas9, greatly enhancing the fidelity and performance of CRISPR/Cas9 gene editing.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: CRISPR-Cas Systems / Gene Editing Type of study: Prognostic_studies Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2023 Document type: Article Affiliation country: Suecia

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: CRISPR-Cas Systems / Gene Editing Type of study: Prognostic_studies Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2023 Document type: Article Affiliation country: Suecia