Enabling high rate capability and stability all-solid-state batteries via cationic surfactant modification of composite electrolyte.
J Colloid Interface Sci
; 652(Pt A): 567-576, 2023 Dec 15.
Article
in En
| MEDLINE
| ID: mdl-37611466
The garnet-type solid electrolyte Li6.4La3Zr1.4Ta0.6O12 (LLZTO) was modified with a cationic surfactant Cetyltrimethylammonium Bromide (CTAB) to improve the dispersion of LLZTO inorganic particles in Poly (ethylene oxide) (PEO) electrolyte (PEO-LLZTO@CTAB) by a liquid phase casting method. During fabrication, the cationic modifier CTAB is uniformly adsorbed on the surface of LLZTO particles, which can effectively reduce their surface energy and lead to a thin CTAB surface coating layer. This fabricated PEO-LLZTO@CTAB can avoid the aggregation of LLZTO particles in the composite solid-state electrolyte (CSSE) and improve the interfacial contact at the PEO/LLZTO interface, thus reducing the overall resistance of PEO-LLZTO@CTAB/Li half-cell and inhibiting the dendrite growth during cycling. The all-solid-state batteries (ASSBs) with LiFePO4 (LFP) as the cathode, PEO-LLZTO@CTAB as the electrolyte and Li as the anode exhibit a high initial discharge capacity of 146.6 mAh-g-1, excellent rate performance and high-capacity retention of 91.0 % after 300 cycles at 0.2 C multiplier and 60 °C within the voltage range of 2.7-4.0 V.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
J Colloid Interface Sci
Year:
2023
Document type:
Article
Affiliation country:
China
Country of publication:
Estados Unidos