Non-uniform contextual interactions in the visual cortex place fundamental limits on spatial vision.
bioRxiv
; 2024 Mar 11.
Article
in En
| MEDLINE
| ID: mdl-37645826
A prevailing assumption in our understanding of how neurons in the primary visual cortex (V1) integrate contextual information is that such processes are spatially uniform. Conversely, perceptual phenomena such as visual crowding, the impaired ability to accurately recognize a target stimulus among distractors, suggest that interactions among stimuli are distinctly non-uniform. Prior studies have shown flankers at specific spatial geometries exert differential effects on target perception. To resolve this discrepancy, we investigated how flanker geometry impacted the representation of a target stimulus in the laminar microcircuits of V1. Our study reveals flanker location differentially impairs stimulus representation in excitatory neurons in the superficial and input layers of V1 by tuned suppression and untuned facilitation of orientation responses. Mechanistically, this effect can be explained by asymmetrical spatial kernels in a normalization model of cortical activity. Strikingly, these non-uniform modulations of neural representation mirror perceptual anisotropies. These results establish the non-uniform spatial integration of information in the earliest stages of cortical processing as a fundamental limitation of spatial vision.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
BioRxiv
Year:
2024
Document type:
Article
Country of publication:
Estados Unidos