Ligand-Directed Shape Reconfiguration in Inorganic Materials.
Small
; 20(4): e2305460, 2024 Jan.
Article
in En
| MEDLINE
| ID: mdl-37726244
Polymer elastomers with reversible shape-changing capability have led to significant development of artificial muscles, functional devices, and soft robots. By contrast, reversible shape transformation of inorganic nanoparticles is notoriously challenging due to their relatively rigid lattice structure. Here, the authors demonstrate the synthesis of shape-changing nanoparticles via an asymmetrical surface functionalization process. Various ligands are investigated, revealing the essential role of steric hindrance from the functional groups. By controlling the unbalanced structural hindrance on the surface, the as-prepared clay nanoparticles can transform their shape in a fast, facile, and reversible manner. In addition, such flexible morphology-controlled mechanism provides a platform for developing self-propelled shape-shifting nanocollectors. Owing to the ion-exchanging capability of clay, these self-propelled nanoswimmers (NS) are able to autonomously adsorb rare earth elements with ultralow concentration, indicating the feasibility of using naturally occurring materials for self-powered nanomachine.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Small
Journal subject:
ENGENHARIA BIOMEDICA
Year:
2024
Document type:
Article
Affiliation country:
Estados Unidos
Country of publication:
Alemania