Your browser doesn't support javascript.
loading
Integration of metabolomics and transcriptomics reveals metformin suppresses thyroid cancer progression via inhibiting glycolysis and restraining DNA replication.
Ouyang, Jielin; Feng, Yang; Zhang, Yiyuan; Liu, Yarong; Li, Shutong; Wang, Jingjing; Tan, Lihong; Zou, Lianhong.
Affiliation
  • Ouyang J; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, PR China; Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, PR China; Key Laboratory of Mol
  • Feng Y; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, PR China; Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, PR China; Key Laboratory of Mol
  • Zhang Y; Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, PR China.
  • Liu Y; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, PR China; Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, PR China; Key Laboratory of Mol
  • Li S; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, PR China; Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, PR China; Key Laboratory of Mol
  • Wang J; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, PR China; Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, PR China.
  • Tan L; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, PR China; Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, PR China. Electronic address: t
  • Zou L; The First Affiliated Hospital of Hunan Normal University (Hunan Provincial People's Hospital), Changsha, Hunan 410005, PR China; Central Laboratory of Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan 410005, PR China. Electronic address: z
Biomed Pharmacother ; 168: 115659, 2023 Dec.
Article in En | MEDLINE | ID: mdl-37864896
ABSTRACT
The anti-tumoral effects of metformin have been widely studied in several types of cancer, including thyroid cancer; however, the underlying molecular mechanisms remain poorly understood. As an oral hypoglycemic drug, metformin facilitates glucose catabolism and disrupts metabolic homeostasis. Metabolic reprogramming, particularly cellular glucose metabolism, is an important characteristic of malignant tumors. This study aimed to explore the therapeutic effects of metformin in thyroid cancer and the underlying metabolic mechanism. In the present study, it was shown that metformin reduced cell viability, invasion, migration, and EMT, and induced apoptosis and cell cycle G1 phase arrest in thyroid cancer. Transcriptome analysis demonstrated that the differentially expressed genes induced by metformin were involved in several signaling pathways including apoptosis singling pathways, TGF-ß signaling, and cell cycle regulation in human thyroid cancer cell lines. In addition, the helicase activity of the CDC45-MCM2-7-GINS complex and DNA replication related genes such as RPA2, RAD51, and PCNA were downregulated in metformin-treated thyroid cancer cells. Moreover, metabolomics analysis showed that metformin-induced significant alterations in metabolic pathways such as glutathione metabolism and polyamine synthesis. Integrative analysis of transcriptomes and metabolomics revealed that metformin suppressed glycolysis by downregulating the key glycolytic enzymes LDHA and PKM2 and upregulating IDH1 expression in thyroid cancer. Furthermore, the anti-tumor role of metformin in thyroid cancer in vivo was shown. Together these results show that metformin plays an anti-tumor role by inhibiting glycolysis and restraining DNA replication in thyroid cancer.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Thyroid Neoplasms / Metformin Limits: Humans Language: En Journal: Biomed Pharmacother Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Thyroid Neoplasms / Metformin Limits: Humans Language: En Journal: Biomed Pharmacother Year: 2023 Document type: Article