Your browser doesn't support javascript.
loading
Comprehensive analysis of the UDP-glucuronate decarboxylase (UXS) gene family in tobacco and functional characterization of NtUXS16 in Golgi apparatus in Arabidopsis.
Li, Zhimin; Chen, Runping; Wen, Yufang; Liu, Hanxiang; Chen, Yangyang; Wu, Xiaoyu; Yang, Youxin; Wu, Xinru; Zhou, Yong; Liu, Jianping.
Affiliation
  • Li Z; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.
  • Chen R; College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.
  • Wen Y; College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.
  • Liu H; College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.
  • Chen Y; College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.
  • Wu X; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China.
  • Yang Y; Jiangxi Key Laboratory for Postharvest Technology and Nondestructive Testing of Fruits & Vegetables, Collaborative Innovation Center of Post-Harvest Key Technology and Quality Safety of Fruits and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang, China.
  • Wu X; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China.
  • Zhou Y; Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China. yongzhou@jxau.edu.cn.
  • Liu J; Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China. yongzhou@jxau.edu.cn.
BMC Plant Biol ; 23(1): 551, 2023 Nov 08.
Article in En | MEDLINE | ID: mdl-37936064
ABSTRACT

BACKGROUND:

UDP-glucuronate decarboxylase (also named UXS) converts UDP-glucuronic acid (UDP-GlcA) to UDP-xylose (UDP-Xyl) by decarboxylation of the C6-carboxylic acid of glucuronic acid. UDP-Xyl is an important sugar donor that is required for the synthesis of plant cell wall polysaccharides.

RESULTS:

In this study, we first carried out the genome-wide identification of NtUXS genes in tobacco. A total of 17 NtUXS genes were identified, which could be divided into two groups (Group I and II), and the Group II UXSs can be further divided into two subgroups (Group IIa and IIb). Furthermore, the protein structures, intrachromosomal distributions and gene structures were thoroughly analyzed. To experimentally verify the subcellular localization of NtUXS16 protein, we transformed tobacco BY-2 cells with NtUXS16 fused to the monomeric red fluorescence protein (mRFP) at the C terminus under the control of the cauliflower mosaic virus (CaMV) 35S promoter. The fluorescent signals of NtUXS16-mRFP were localized to the medial-Golgi apparatus. Contrary to previous predictions, protease digestion analysis revealed that NtUXS16 is not a type II membrane protein. Overexpression of NtUXS16 in Arabidopsis seedling in darkness led to a significant increase in hypocotyl length and a reduction in root length compared with the wild type. In summary, these results suggest Golgi apparatus localized-NtUXS16 plays an important role in hypocotyl and root growth in the dark.

CONCLUSION:

Our findings facilitate our understanding of the novel functions of NtUXS16 and provide insights for further exploration of the biological roles of NtUXS genes in tobacco.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Carboxy-Lyases / Arabidopsis / Arabidopsis Proteins Language: En Journal: BMC Plant Biol Journal subject: BOTANICA Year: 2023 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Carboxy-Lyases / Arabidopsis / Arabidopsis Proteins Language: En Journal: BMC Plant Biol Journal subject: BOTANICA Year: 2023 Document type: Article Affiliation country: China