Your browser doesn't support javascript.
loading
Functionalized Fe-Doped Carbon Dots Exhibiting Dual Glutathione Consumption to Amplify Ferroptosis for Enhanced Cancer Therapy.
Zhou, Mingyue; Yang, Ziwei; Yin, Tianpeng; Zhao, Yunfeng; Wang, Cai-Yun; Zhu, Guo-Yuan; Bai, Li-Ping; Jiang, Zhi-Hong; Zhang, Wei.
Affiliation
  • Zhou M; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macau 999078, China.
  • Yang Z; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macau 999078, China.
  • Yin T; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macau 999078, China.
  • Zhao Y; Tianjin Key Laboratory of Advanced Functional Porous Materials, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
  • Wang CY; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macau 999078, China.
  • Zhu GY; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macau 999078, China.
  • Bai LP; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macau 999078, China.
  • Jiang ZH; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macau 999078, China.
  • Zhang W; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Macau 999078, China.
ACS Appl Mater Interfaces ; 15(46): 53228-53241, 2023 Nov 22.
Article in En | MEDLINE | ID: mdl-37943281
ABSTRACT
Nonapoptotic ferroptosis is a promising cancer treatment which offers a solution to the multidrug resistance of conventional apoptosis-induced programmed cancer cell death therapies. Reducing intracellular glutathione (GSH) is essential for inducing excess ROS and has been considered a crucial process to trigger ferroptosis. However, treatments reducing GSH alone have not produced satisfactory effects due to their restricted target. In this regard, FeCDs (Fe3+-modified l-histidine -sourced carbon dots) with dual GSH-consumption capabilities were constructed to engineer ferroptosis by self-amplifying intratumoral oxidative stress. Carbon dots have the ability to consume GSH, and the introduction of Fe3+ can amplify the GSH-consuming ability of CDs, reacting with excess H2O2 in the tumor microenvironment to generate highly oxidized •OH. This is a novel strategy through synergistic self-amplification therapy combining Fe3+ and CDs with GSH-consuming activity. The acid-triggered degradation material (FeCDs@PAE-PEG) was prepared by encapsulating FeCDs in an oil-in-water manner. Compared with other ferroptosis-triggering nanoparticles, the established FeCDs@PAE-PEG is targeted and significantly enhances the consumption efficiency of GSH and accumulation of excess iron without the involvement of infrared light and ultrasound. This synergistic strategy exhibits excellent ferroptosis-inducing ability and antitumor efficacy both in vitro and in vivo and offers great potential for clinical translation of ferroptosis.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ferroptosis / Neoplasms Limits: Humans Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2023 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Ferroptosis / Neoplasms Limits: Humans Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2023 Document type: Article Affiliation country: China