Your browser doesn't support javascript.
loading
Effects of glycine 64 substitutions in RNA-dependent RNA polymerase on ribavirin sensitivity and pathogenicity of coxsackievirus A6.
Wang, Rui; Sun, Qiang; Xiao, Jinbo; Wang, Congcong; Li, Xiaoliang; Li, Jichen; Song, Yang; Lu, Huanhuan; Liu, Ying; Zhu, Shuangli; Liu, Zhijun; Zhang, Yong.
Affiliation
  • Wang R; Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.
  • Sun Q; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory,
  • Xiao J; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory,
  • Wang C; Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.
  • Li X; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory,
  • Li J; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory,
  • Song Y; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory,
  • Lu H; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory,
  • Liu Y; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory,
  • Zhu S; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory,
  • Liu Z; Department of Medical Microbiology, Weifang Medical University, Weifang 261053, China. Electronic address: zhijun.liu@wfmc.edu.cn.
  • Zhang Y; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID). National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, No.155 Changbai Road, Beijing 102206, China; WHO WPRO Regional Polio Reference Laboratory,
Virus Res ; 339: 199268, 2024 01 02.
Article in En | MEDLINE | ID: mdl-37949376
ABSTRACT
Hand, foot, and mouth disease (HFMD) caused by a group of enteroviruses is a global public health problem. In recent years, coxsackievirus A6 (CVA6) has emerged as an important HFMD agent. Previous studies have shown that mutations of glycine 64 in RNA-dependent RNA polymerase (3D polymerase), which is central to viral replication, cause phenotypic changes such as ribavirin resistance, increased replication fidelity, and virulence attenuation in poliovirus and enterovirus A71. In this study, we constructed CVA6 mutants with G64R, G64S, and G64T substitutions by site-directed mutagenesis in full-length cDNA of an infectious CVA6 strain cloned in pcDNA3.1. Viral RNA was obtained by in vitro transcription, and the rescued virus strains were propagated in RD cells. Sequencing after six passages revealed that G64S and G64T mutations were stably inherited, whereas G64R was genetically unstable and reversed to the wild type. Comparison of the biological characteristics of the wild-type and mutant CVA6 strains in an in vivo model (one-day-old ICR mice) revealed that the pathogenicity of CVA6-G64S and CVA6-G64T was significantly reduced compared to wild-type CVA6. In vitro experiments indicated the mutant CVA6-G64S and CVA6-G64T strains had increased resistance to 0.8 mM ribavirin and a decreased replication rate in the presence of 0.8 mM guanidine hydrochloride. Our results show that mutation of residue 64 reduces CVA6 susceptibility to ribavirin and increases CVA6 susceptibility to guanidine hydrochloride, together with increased replication fidelity and attenuated viral pathogenicity, thus laying a foundation for the development of safe and effective live attenuated CVA6 vaccine.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: RNA-Dependent RNA Polymerase / Enterovirus / Enterovirus Infections / Viral Replicase Complex Proteins Limits: Animals Language: En Journal: Virus Res Journal subject: VIROLOGIA Year: 2024 Document type: Article Affiliation country: Noruega

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: RNA-Dependent RNA Polymerase / Enterovirus / Enterovirus Infections / Viral Replicase Complex Proteins Limits: Animals Language: En Journal: Virus Res Journal subject: VIROLOGIA Year: 2024 Document type: Article Affiliation country: Noruega