Your browser doesn't support javascript.
loading
Hydrosilylation Adducts to Produce Wide-Temperature Flexible Polysiloxane Aerogel under Ambient Temperature and Pressure Drying.
Guo, Bi-Fan; Wang, Ye-Jun; Qu, Zhang-Hao; Yang, Fan; Qin, Yu-Qing; Li, Yang; Zhang, Guo-Dong; Gao, Jie-Feng; Shi, Yongqian; Song, Pingan; Tang, Long-Cheng.
Affiliation
  • Guo BF; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
  • Wang YJ; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
  • Qu ZH; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
  • Yang F; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
  • Qin YQ; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
  • Li Y; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
  • Zhang GD; College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China.
  • Gao JF; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
  • Shi Y; College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, China.
  • Song P; Centre for Future Materials, University of Southern Queensland, Springfield Campus, QLD, 4300, Australia.
  • Tang LC; School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, QLD, 4300, Australia.
Small ; 20(14): e2309272, 2024 Apr.
Article in En | MEDLINE | ID: mdl-37988706
ABSTRACT
Despite incorporation of organic groups into silica-based aerogels to enhance their mechanical flexibility, the wide temperature reliability of the modified silicone aerogel is inevitably degraded. Therefore, facile synthesis of soft silicone aerogels with wide-temperature stability remains challenging. Herein, novel silicone aerogels containing a high content of Si are reported by using polydimethylvinylsiloxane (PDMVS), a hydrosilylation adduct with water-repellent groups, as a "flexible chain segment" embedded within the aerogel network. The poly(2-dimethoxymethylsilyl)ethylmethylvinylsiloxane (PDEMSEMVS) aerogel is fabricated through a cost-effective ambient temperature/pressure drying process. The optimized aerogel exhibits exceptional performance, such as ultra-low density (50 mg cm-3), wide-temperature mechanical flexibility, and super-hydrophobicity, in comparison to the previous polysiloxane aerogels. A significant reduction in the density of these aerogels is achieved while maintaining a high crosslinking density by synthesizing gel networks with well-defined macromolecules through hydrolytic polycondensation crosslinking of PDEMSEMVS. Notably, the pore/nanoparticle size of aerogels can be fine-tuned by optimizing the gel solvent type. The as-prepared silicone aerogels demonstrate selective absorption, efficient oil-water separation, and excellent thermal insulation properties, showing promising applications in oil/water separation and thermal protection.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Small Journal subject: ENGENHARIA BIOMEDICA Year: 2024 Document type: Article Affiliation country: China